Please wait a minute...
Acta Metall Sin  2024, Vol. 60 Issue (11): 1499-1511    DOI: 10.11900/0412.1961.2022.00352
Research paper Current Issue | Archive | Adv Search |
Codeposition Behaviors and Anti-Corrosive Mechanism of Ni-Co-Zn Ternary Alloys
ZHOU Xiaowei(), JING Xueyan, FU Ruixue, WANG Yuxin
School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
Cite this article: 

ZHOU Xiaowei, JING Xueyan, FU Ruixue, WANG Yuxin. Codeposition Behaviors and Anti-Corrosive Mechanism of Ni-Co-Zn Ternary Alloys. Acta Metall Sin, 2024, 60(11): 1499-1511.

Download:  HTML  PDF(4095KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Zinc-metal alloys with ferrous group metals such as Ni, Co, and Fe have been used for industrial applications due to their better corrosion performance compared to pure Zn. Among them, ternary Zn-Ni-Co alloys, which have superior corrosion resistance and magnetic features, have attracted extensive attention, and have been used as functional films in electro-mechanical system (EMS) devices and magnetic recording media. However, large differences in the reduction peak potential between Zn2+, Ni2+, and Co2+ restrict their codeposition because Zn-competitive adsorption hinders the discharge transfer of Ni2+ or Co2+. In view of the aforementioned statements, the effects of molar concentration ratios of Ni2+ : Co2+ : Zn2+ and the ascorbic acid (H2Asc) concentrations in the bath on the surface features and textures of the Zn-Ni-Co alloys were assessed and characterized using FE-SEM, XRD, etc. Results showed that under the optimized condition of Ni2+ : Co2+ : Zn2+ = 4 : 5 : 1, the Ni content in the Ni-Co-Zn deposits reached 12.2%, which was instrumental in grain refinement. From the cyclic voltammetry curves, the potential of the reduction peak positively shifted from -1.47 V to -1.28 V, validating better codeposition with an appropriate H2Asc concentration. SEM observations depicted a cauliflower-like texture with a crystal size of ~300 nm at a minimum growing stress of 9.04 MPa for the samples with 5 g/L H2Asc concentration. From EDS analysis, with increasing H2Asc concentration from 1 g/L to 5 g/L, the Ni + Co content in the Ni-Co-Zn deposits gradually increased but their Zn content decreased, which was attributed to the addition of H2Asc in the form of [ZnHAsc]+ to offer more active sites for Ni or Co growth. Intermetallic compounds such as γ-Ni5Zn21, CoZn13, and Ni3Zn22 were determined using XRD. The anticorrosive behavior was evaluated via potentiodynamic polarization (Tafel) tests in a 3.5%NaCl solution. The free corrosion potential (Ecorr) positively shifted by ~200 mV for the samples with 5 g/L H2Asc concentration and their corrosion current density (icorr) has declined about 75% than those of the samples without H2Asc. EIS results revealed a capacitive arc followed by a diffusion arc for the samples without H2Asc, indicating pitting corrosion, and an inductive arc attached to a larger-radius capacitive arc for the samples with different H2Asc concentrations, showing better corrosion resistance. This was due to the coexistence of the γ-Ni5Zn21 intermetallic phase and insoluble products [Zn(OH)4]2- that fully covered the Zn-dissolved active area to complete the corrosive channels via Cl- diffusion, thus increasing the corrosion resistance of the Ni-Co-Zn alloys.

Key words:  Ni-Co-Zn alloy      anomalous codeposition      H2Asc complexing agent      corrosion resistance     
Received:  29 July 2022     
ZTFLH:  TB332  
Fund: National Natural Science Foundation of China(51605203)
Corresponding Authors:  ZHOU Xiaowei, associate professor, Tel: (0511)84401188, E-mail: zhouxiaowei901@just.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00352     OR     https://www.ams.org.cn/EN/Y2024/V60/I11/1499

Fig.1  SEM images showing surface features of deposited Ni-Co-Zn alloys within different ionic molar concentration ratios of Ni2+∶Co2+∶Zn2+ (Insets in Figs.1a and b show the locally high magnified images; GB—grain boundary)
(a) 1 ∶ 1 ∶ 1 (b) 2 ∶ 6 ∶ 1 (c) 4 ∶ 1 ∶ 2 (d) 4 ∶ 5 ∶ 1
Ni ∶ Co ∶ ZnNiCoZn
1 ∶ 1 ∶ 13.702.3893.92
2 ∶ 6 ∶ 15.243.0591.71
4 ∶ 1 ∶ 27.136.8186.06
4 ∶ 5 ∶ 112.1420.2267.64
Table 1  Chemical compositions of deposited Ni-Co-Zn alloys within different ionic molar concentration ratios
Fig.2  Cyclic voltammogram curves for Ni-Co-Zn deposits from the electrolytic baths within different H2Asc concentrations at a scan rate of 10 mV/s (i—current density, E—potential, SCE—satured calomel electrode)
Fig.3  SEM images showing surface features of Ni-Co-Zn deposits within different H2Asc concentrations (Insets show the EDS results of square-located areas and the locally high magnified image)
(a) 0 g/L (b) 3 g/L (c) 5 g/L (d) 10 g/L
Fig.4  XRD spectra showing textural evolution for Ni-Co-Zn deposits within different H2Asc concentrations
(a) 0 g/L (b) 3 g/L (c) 5 g/L (d) 10 g/L
Fig.5  OM images showing surface deformations by growth stresses for the as-deposited samples with different H2Asc concentrations (Z—initial length of Cu substrate for deposit, l—length of deposit, α—the angle at which the cathode is warped, σ—interior stress of deposit)
(a) 0 g/L (b) 3 g/L (c) 5 g/L (d) 10 g/L
Fig.6  SEM images showing surface features for tested samples with different H2Asc concentrations (Insets show the EDS results for the square-located areas in Figs.6b and c)
(a) 0 g/L (b) 3g/L (c) 5g/L (d) 10g/L
Fig.7  Potentiodynamic polarization curves of tested samples immersed in 3.5%NaCl solution

c

g·L-1

bc

mV·dec-1

ba

mV·dec-1

Ecorr

mV

icorr

10-6 A·cm-2

Rp

kΩ

0149.14158.79-1127.91.5821.10
3148.33161.15-1117.50.7544.69
5159.32174.13-979.20.4083.10
10121.4764.98-1038.70.4345.84
Table 2  Electrochemical parameters obtained from the polarization curves
Fig.8  Electrochemical impedance spectroscopy (EIS) of tested samples with different H2Asc concen-trations immersed in 3.5%NaCl solution (Z'—real part of AC impedance, Z''—imaginary part of AC impedance, |Z|—the total impedance)
(a) Nyquist plots (b) Bode plots
Fig.9  Equivalent circuits fittings for tested samples without (a) and with (b) H2Asc addition (Rs—solution resistance, Rct—charge transfer resistance, Rpf—passive layer resistance, CPEdl—double layer capacitance, CPEsei—passive layer capacitance, L—equivalent inductance, W—Warburg impedance )

c

g·L-1

Rs

Ω·cm2

CPEsei

Ω-1·snf·cm-2

nf

Rpf

Ω·cm2

CPEdl

Ω-1·snd·cm-2

nd

Rct

Ω·cm2

L

H·cm-2

W

Ω·cm2·s0.5

Error|Z|

10-3

011.405.83 × 10-30.45332.252.64 × 10-70.4237.76-2.33 × 10-95.562
311.176.44 × 10-30.72624.169.36 × 10-50.6967.8930.65-5.375
58.772.05 × 10-30.729172.12.46 × 10-30.37018.6240.71-3.734
1011.197.93 × 10-30.67032.467.96 × 10-50.7117.624.02-5.270
Table 3  Fitting results from the proposed EIS for tested samples
Fig.10  XRD spectra of corroded products for samples immersed in 3.5%NaCl solution for 7 d
Fig.11  Schematic of corrosion mechanism for Ni-Co-Zn ternary coatings in 3.5%NaCl solution
1 Abou-Krisha M M. Influence of Ni2+ concentration and deposition potential on the characterization of thin electrodeposited Zn-Ni-Co coatings [J]. Mater. Chem. Phys., 2011, 125: 621
2 Younan M M. Surface microstructure and corrosion resistance of electrodeposited ternary Zn-Ni-Co alloy [J]. J. Appl. Electrochem., 2000, 30: 55
3 Li W J, Yang X H, Wang F Y. Study on electrodeposition preparation and corrosion resistance of Zn-Ni alloy [J]. Electroplat. Pollut. Control, 2017, 37(3): 13
李文娟, 杨小红, 王凤英. 电沉积制备Zn-Ni合金及其耐蚀性的研究 [J]. 电镀与环保, 2017, 37(3): 13
4 Maksimović V M, Kusigerski V B, Stoiljković M M, et al. Influence of Ni2+/Co2+ ratio in electrolyte on morphology, structure and magnetic properties of electrolytically produced Ni-Co alloy powders [J]. Trans. Nonferrous Met. Soc. China, 2020, 30: 1046
5 Bajat J B, Stanković S, Jokić B M. Electrochemical deposition and corrosion stability of Zn-Co alloys [J]. J. Solid State Electrochem., 2009, 13: 755
6 Yang Z H, Liao J P, Wang S W, et al. Effects of dispersant on performance of Ni-Zn batteries [J]. J. Cent. South Univ. Technol., 2010, 17: 930
7 Feng Z B, Ren L L, Zhang J Q, et al. Influence of additives on microstructure, mechanical and tribological properties of nanocrystalline Zn-Ni coatings in a novel alkaline bath [J]. RSC Adv., 2016, 6: 42029
8 Zhang H, Wu D, Zhang L, et al. Wafer level electrodeposion of Fe-Ni novel UBM films [J]. Acta Metall Sin., 2012, 48: 1273
张 昊, 吴 迪, 张 黎 等. Fe-Ni新型UBM薄膜的晶圆电镀工艺研究 [J]. 金属学报, 2012, 48: 1273
9 Wykpis K. Influence of Co2+ ions concentration in a galvanic bath on properties of electrolytic Zn-Ni-Co coatings [J]. Surf. Interface Anal., 2014, 46: 746
10 Qi H D, Guo Z, Lu S, et al. Effect of sodium citrate on Zn-Ni-Mn alloy electrodeposition behavior [J]. Surf. Technol., 2019, 48(3): 201
齐海东, 郭 昭, 卢 帅 等. 柠檬酸钠对Zn-Ni-Mn合金电沉积行为的影响 [J]. 表面技术, 2019, 48(3): 201
11 Yu J K, Zhao L L, Sun H. Effect of processing parameters and ascorbic acid on the electrodeposition NiFeW alloy coatings [J]. Rare Met. Mater. Eng., 2018, 47: 436
12 Eliaz N, Venkatakrishna K, Hegde A C. Electroplating and characterization of Zn-Ni, Zn-Co and Zn-Ni-Co alloys [J]. Surf. Coat. Technol., 2010, 205: 1969
13 Bhat R S, Shet V B. Development and characterization of Zn-Ni, Zn-Co and Zn-Ni-Co coatings [J]. Surf. Eng., 2020, 36: 429
doi: 10.1080/02670844.2019.1680037
14 Zhang Y H, Cheng P F, Meng F J, et al. Experimental study on electroforming of Ni-Co alloy with low internal stress [J]. J. Henan Inst. Technol., 2020, 28(4): 21
张艳华, 程鹏飞, 孟凡净 等. 电铸低内应力Ni-Co合金实验研究 [J]. 河南工学院学报, 2020, 28(4): 21
15 Abou-Krisha M M. Electrochemical studies of zinc-nickel codeposition in sulphate bath [J]. Appl. Surf. Sci., 2005, 252: 1035
16 Dikici T, Culha O, Toparli M. Study of the mechanical and structural properties of Zn-Ni-Co ternary alloy electroplating [J]. J. Coat. Technol. Res., 2010, 7: 787
17 Tsybulskaya L S, Gaevskaya T V, Purovskaya O G, et al. Electrochemical deposition of zinc-nickel alloy coatings in a polyligand alkaline bath [J]. Surf. Coat. Technol., 2008, 203: 234
18 Szczygiel B, Laszczynska A. Influence of bath concentration and pH on electrodeposition process of ternary Zn-Ni-Mo alloy coatings [J]. Trans. IMF, 2014, 92: 196
19 Xing L H, Li D Y, Li N, et al. Effect of ascorbic acid on stability of sulfate nickel-iron alloy electroplating bath [J]. Electroplat. Finish., 2018, 37: 526
邢乐红, 黎德育, 李 宁 等. 抗坏血酸对硫酸盐体系镍-铁合金镀液稳定性的影响 [J]. 电镀与涂饰, 2018, 37: 526
20 Rodríguez C A, Tobosque P, Maril M, et al. Effect of different complexing agents on Pb-Co thin-film electrodeposition [J]. J. Mater. Sci., 2017, 52: 3388
21 Chen Y D. Estimation of stability constants of metal complexes [J]. Chem. Res. Chin. Univ., 1980, 1(1): 9
陈与德. 络合物稳定常数的计算 [J]. 高等学校化学学报, 1980, 1(1): 9
22 Gnanamuthu R M, Lee C W. Electrochemical lithium storage performance of ternary Zn-Co-Ni alloy thin film as negative electrodes by electrodeposition method [J]. J. Alloys Compd., 2011, 509: 8933
23 Zhou X W, Ouyang C. Wear and corrosive behaviors of electroless Ni-LaCl3 composites on nanoporous ATO surface of Ti substrate [J]. J. Mater. Eng. Perform., 2019, 28: 2499
24 Kurachi M, Fujiwara K. Internal stress in nickel-zinc alloys electrodeposited from sulphate solutions [J]. Trans. Jpn. Inst. Met., 1970, 11: 311.
25 Stern M, Geary A L. Electrochemical polarization: I. A theoretical analysis of the shape of polarization curves [J]. J. Electrochem. Soc., 1957, 104: 56
26 Shao Y, Guo P Y, Sun H, et al. Structure and properties of composite Ni-Co-Mn coatings on metal interconnects by electrodeposition [J]. J. Alloys Compd., 2019, 811: 152006
27 Zhou X W, Wang Y X. LaCl3-modified Ni deposits on 3D-heterotypic porous Ti surface for strengthening its mechanical and electrochemical properties [J]. Surf. Coat. Technol., 2019, 375: 652
28 Conrad H, Corbett J, Golden T D. Electrochemical deposition of γ-phase zinc-nickel alloys from alkaline aolution [J]. J. Electrochem. Soc., 2011, 159: C29
29 Tozar A, Karahan İ H. Structural and corrosion protection properties of electrochemically deposited nano-sized Zn-Ni alloy coatings [J]. Appl. Surf. Sci., 2014, 318: 15
30 Roventi G, Cecchini R, Fabrizi A, et al. Electrodeposition of nickel-zinc alloy coatings with high nickel content [J]. Surf. Coat. Technol., 2015, 276: 1
31 Byk T V, Gaevskaya T V, Tsybulskaya L S. Effect of electrodeposition conditions on the composition, microstructure, and corrosion resistance of Zn-Ni alloy coatings [J]. Surf. Coat. Technol., 2008, 202: 5817
32 Wang D P, Shen J W, Chen Z, et al. Relationship of corrosion behavior between single-phase equiatomic CoCrNi, CoCrNiFe, CoCrNiFeMn alloys and their constituents in NaCl solution [J]. Acta Metall. Sin. (Engl. Lett.), 2021, 34: 1574
33 Abd El-Lateef H M, El-Sayed A R, Mohran H S. Role of Ni content in improvement of corrosion resistance of Zn-Ni alloy in 3.5% NaCl solution. Part I: Polarization and impedance studies [J]. Trans. Nonferrous Met. Soc. China, 2015, 25: 2807
34 Kwon M, Jo D H, Cho S H, et al. Characterization of the influence of Ni content on the corrosion resistance of electrodeposited Zn-Ni alloy coatings [J]. Surf. Coat. Technol., 2016, 288: 163
[1] MENG Ze, LI Guangqiang, LI Tengfei, ZHENG Qing, ZENG Bin, LIU Yu. Effect of Ce on Cleanliness, Microstructure, and Pitting Corrosion Resistance of 75Cr1 Steel[J]. 金属学报, 2024, 60(9): 1229-1238.
[2] ZENG Yunpeng, YAN Wei, SHI Xianbo, YAN Maocheng, SHAN Yiyin, YANG Ke. Effect of Copper Content on the MIC Resistance in Pipeline Steel[J]. 金属学报, 2024, 60(1): 43-56.
[3] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[4] XU Linjie, LIU Hui, REN Ling, YANG Ke. Effect of Cu on In-Stent Restenosis and Corrosion Resistance of Ni-Ti Alloy[J]. 金属学报, 2023, 59(4): 577-584.
[5] ZHAO Xiaofeng, LI Ling, ZHANG Han, LU Jie. Research Progress in High-Entropy Alloy Bond Coat Material for Thermal Barrier Coatings[J]. 金属学报, 2022, 58(4): 503-512.
[6] HUANG Yichuan, WANG Qing, ZHANG Shuang, DONG Chuang, WU Aimin, LIN Guoqiang. Optimization of Stainless Steel Composition for Fuel Cell Bipolar Plates[J]. 金属学报, 2021, 57(5): 651-664.
[7] ZHU Wenting, CUI Junjun, CHEN Zhenye, FENG Yang, ZHAO Yang, CHEN Liqing. Design and Performance of 690 MPa Grade Low-Carbon Microalloyed Construction Structural Steel with High Strength and Toughness[J]. 金属学报, 2021, 57(3): 340-352.
[8] WANG Xuemei, YIN Zhengzheng, YU Xiaotong, ZOU Yuhong, ZENG Rongchang. Comparison of Corrosion Resistance of Phenylalanine, Methionine, and Asparagine-Induced Ca-P Coatings on AZ31 Magnesium Alloys[J]. 金属学报, 2021, 57(10): 1258-1271.
[9] CHEN Yongjun, BAI Yan, DONG Chuang, XIE Zhiwen, YAN Feng, WU Di. Passivation Behavior on the Surface of Stainless Steel Reinforced by Quasicrystal-Abrasive via Finite Element Simulation[J]. 金属学报, 2020, 56(6): 909-918.
[10] Lin WEI,Zhijun WANG,Qingfeng WU,Xuliang SHANG,Junjie LI,Jincheng WANG. Effect of Mo Element and Heat Treatment on Corrosion Resistance of Ni2CrFeMox High-Entropy Alloyin NaCl Solution[J]. 金属学报, 2019, 55(7): 840-848.
[11] Xiubing LIANG, Jianwen FAN, Zhibin ZHANG, Yongxiong CHEN. Microstructure and Corrosion Properties of Aluminum Base Amorphous and Nanocrystalline Composite Coating[J]. 金属学报, 2018, 54(8): 1193-1203.
[12] Li FAN, Haiyan CHEN, Yaohua DONG, Xueying LI, Lihua DONG, Yansheng YIN. Corrosion Behavior of Fe-Based Laser Cladding Coating in Hydrochloric Acid Solutions[J]. 金属学报, 2018, 54(7): 1019-1030.
[13] Haiou YANG, Xuliang SHANG, Lilin WANG, Zhijun WANG, Jincheng WANG, Xin LIN. Effect of Constituent Elements on the Corrosion Resistance of Single-Phase CoCrFeNi High-Entropy Alloys in NaCl Solution[J]. 金属学报, 2018, 54(6): 905-910.
[14] Ke YANG, Mengchao U, Jialong AN, Wei NG. Research and Development of Maraging Stainless Steel Used for New Generation Landing Gear[J]. 金属学报, 2018, 54(11): 1567-1585.
[15] Erlin ZHANG, Xiaoyan WANG, Yong HAN. Research Status of Biomedical Porous Ti and Its Alloy in China[J]. 金属学报, 2017, 53(12): 1555-1567.
No Suggested Reading articles found!