Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys
ZHANG Jian1(), WANG Li1, XIE Guang1, WANG Dong1, SHEN Jian1, LU Yuzhang1, HUANG Yaqi1, LI Yawei1,2
1Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
Cite this article:
ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys. Acta Metall Sin, 2023, 59(9): 1109-1124.
Single crystal Ni-based superalloys are key materials used in the hot section of aeroengines and industrial gas turbines. In service, single crystal blades face harsh environments, including high temperatures, complex stresses, oxidation and hot corrosion. Therefore, they must meet strict technical specifications, such as impurity, defects and dimensional control. Single crystal components should be manufactured using complex technologies within a highly narrow processing window. The present paper reviews recent progress in the research and development of alloy design, microstructure and property evolution and characterization, evaluation in near-service conditions, and single crystal manufacture. Further, the development of “next generation” high-temperature structural materials, such as refractory high-entropy alloys, is briefly discussed.
Fund: National Key Research and Development Program of China(2021YFB3702900);National Natural Science Foundation of China(5227-1042);National Natural Science Foundation of China(52071219);National Natural Science Foundation of China(52201151);National Natural Science Foundation of China(U2141206);National Natural Science Foundation of China(U2241283);National Science and Technology Major Project(P2022-C-IV-001-001);National Science and Technology Major Project(P2021-AB-IV-001-002);National Science and Technology Major Project(J2019-IV-0006-0074);National Science and Technology Major Project(J2019-VI-0010-0124);Directional Institutionalized Scientific Research Platform Relies on China Spallation Neutron Source of Chinese Academy of Sciences, International Partnership Program of Chinese Academy of Sciences(172GJHZ2022095FN);National Key Laboratory for Precision Hot Processing of Metals, Harbin Institute of Technology Harbin(JCKYS2022603C008)
Fig.1 Specific creep rupture life of different single crystal superalloys (P—Larson-Miller parameter, T—temperature (K), t—time, SX—single crystal superalloy)[3-10]
Fig.2 Schematics of temperature dependence of creep deformation mechanisms for single crystal superalloys (a-c) at medium temperature, the main deformation mechanism is matrix dislocation reaction (a), and at higher stress, dislocation dissociation is also activated (b), both mechanisms in Figs.2a and b lead to the formation of stacking faults (SFs) (c) (σ—applied stress) (d-f) at high temperature, the applied stress and misfit stress impel matrix dislocation reaction at γ/γ' interface during primary creep, and then dislocation networks generate (d), as creep in progress, high local stress and interaction of interfacial dislocations result in the formation of superdislocations, including a<110> type and a<100> type (e), the former is antiphase boundary (APB) coupled with dislocation pair, and the latter is dislocation pair with non-compact core originating from interfacial dislocations. In latter stage, γ'-raft cutting by superdislocations occurs (f)
DS process
Alloy
PDAS / μm
Volume fraction of porosity / %
Average porosity size / μm2
HRS
CMSX-4
333-384
0.072-0.102
18.9
FBC
CMSX-4
248-275
0.022-0.045
8.8
LMC
DD33
180
0.02
6.8
Table 1 Microstructures of single crystal castings obtained by high rate solidification (HRS), fluidized bed cooling (FBC), and liquid metal cooling (LMC)
Fig.3 Simulation of the temperature field during LMC process
Fig.4 Temperature dependence of compressive (a) and tensile (b) yield strengths of high-entropy alloys and superalloys[176~193] (Solid and hollow symbols in Fig.4a indicate single-phase and multi-phase alloys, respectively)
1
Zhang J, Wang L, Wang D, et al. Recent progress in research and development of nickel-based single crystal superalloys [J]. Acta Metall. Sin., 2019, 55: 1077
Yokokawa T, Harada H, Kawagishi K, et al. Advanced alloy design program and improvement of sixth-generation Ni-base single crystal superalloy TMS-238 [A]. Superalloys 2020 [C]. Warrendale, PA: TMS, 2020: 122
3
Petrushin N V, Elyutin E S, Visik E M, et al. Development of a single-crystal fifth-generation nickel superalloy [J]. Russ. Metall., 2017, 2017: 936
doi: 10.1134/S0036029517110118
4
Antonov S, Zheng Y F, Sosa J M, et al. Plasticity assisted redistribution of solutes leading to topological inversion during creep of superalloys [J]. Scr. Mater., 2020, 186: 287
doi: 10.1016/j.scriptamat.2020.05.004
5
Walston W S, O'Hara K S, Ross E W, et al. René N6: Third generation single crystal superalloy [A]. Superalloys 1996 [C]. Warrendale, PA: TMS, 1996: 27
6
Harris K, Erickson G L, Sikkenga S L, et al. Development of the rhenium containing superalloys CMSX-4® & CM 186 LC® for single crystal blade and directionally solidified vane applications in advanced turbine engines [A]. Superalloys 1992 [C]. Warrendale, PA: TMS, 1992: 297
7
Hino T, Kobayashi T, Koizumi Y, et al. Development of a new single crystal superalloy for industrial gas turbines [A]. Superalloys 2000 [C]. Warrendale, PA: TMS, 2000: 729
8
Harada H. High temperature materials for gas turbines: The present and future [A]. Proceedings of the International Gas Turbine Congress 2003 [C]. Tokyo, Japan, 2003: 1
9
Koizumi Y, Kobayashi T, Yokokawa T, et al. Development of next-generation Ni-base single crystal superalloys [A]. Superalloys 2004 [C]. Warrendale, PA: TMS, 2004: 35
10
Koizumi Y, Kawagishi K, Yokokawa T, et al. Hot corrosion and creep properties of Ni-base single-crystal superalloys [A]. Superalloys 2020 [C]. Warrendale, PA: TMS, 2020: 747
11
Xia W S, Zhao X B, Yue L, et al. A review of composition evolution in Ni-based single crystal superalloys [J]. J. Mater. Sci. Technol., 2020, 44: 76
doi: 10.1016/j.jmst.2020.01.026
12
van Sluytman J S, Moceri C J, Pollock T M. A Pt-modified Ni-base superalloy with high temperature precipitate stability [J]. Mater. Sci. Eng., 2015, A639: 747
13
Rame J, Utada S, Ormastroni L M B, et al. Platinum-containing new generation nickel-based superalloy for single crystalline applications [A]. Superalloys 2020 [C]. Warrendale, PA: TMS, 2020: 71
14
Luo L, Ru Y, Ma Y, et al. Design for 1200oC creep properties of Ni-based single crystal superalloys: Effect of γ'-forming elements and its microscopic mechanism [J]. Mater. Sci. Eng., 2022, A832: 142494
15
Ru Y, Hu B, Zhao W Y, et al. Topologically inverse microstructure in single-crystal superalloys: Microstructural stability and properties at ultrahigh temperature [J]. Mater. Res. Lett., 2021, 9: 497
doi: 10.1080/21663831.2021.1982785
16
Cheng Y, Zhao X B, Xia W S, et al. Effects of Mo addition on microstructure of a 4th generation Ni-based single crystal superalloy [J]. Prog. Nat. Sci.: Mater. Int., 2022, 32: 745
doi: 10.1016/j.pnsc.2022.10.001
17
Pan Q H, Zhao X B, Yue Q Z, et al. Effects of cobalt on solidification characteristics and as-cast microstructure of an advanced nickel-based single crystal superalloys [J]. J. Mater. Sci. Technol., 2022, 20: 3074
18
Rame J, Caron P, Locq D, et al. Development of AGAT, a third-generation nickel-based superalloy for single crystal turbine blade applications [A]. Superalloys 2020 [C]. Warrendale, PA: TMS, 2020: 31
19
Zhao Y S, Zhang J, Luo Y S, et al. Improvement of grain boundary tolerance by minor additions of Hf and B in a second generation single crystal superalloy [J]. Acta Mater., 2019, 176: 109
doi: 10.1016/j.actamat.2019.06.054
20
Pedraza F, Troncy R, Pasquet A, et al. Critical hafnium content for extended lifetime of AM1 single crystal superalloy [A]. Superalloys 2020 [C]. Warrendale, PA: TMS, 2020: 781
21
Horie T, Kawagishi K, Takata Y, et al. Creep durability of Ni-base single crystal superalloy containing Pb impurity [J]. Metall. Mater. Trans., 2022, 53A: 2627
22
Zhang Z P. Effect of Re and ppm level S addition on the oxidation and hot corrosion behavior of Ni-base single crystal superalloys [D]. Shenyang: Shenyang University of Technology, 2019
Zhan X, Wang D, Zhang Z P, et al. Effect of trace sulfur on the hot corrosion resistance of Ni-base single crystal superalloy [J]. Corros. Sci., under review
24
Kawagishi K, Tabata C, Sugiyama T, et al. Suppression of sulfur segregation at scale/substrate interface for sixth-generation single-crystal Ni-base superalloy [A]. Superalloys 2020 [C]. Warrendale, PA: TMS, 2020: 798
25
Liu P, Huang H Y, Antonov S, et al. Machine learning assisted design of γ'-strengthened Co-base superalloys with multi-performance optimization [J]. npj Comput. Mater., 2020, 6: 62
doi: 10.1038/s41524-020-0334-5
26
Müller M, Schleifer F, Fleck M, et al. Consistent automatic evaluation of γ/γ' Ni-base superalloy microstructure parameters from micrographs and simulation data [R]. Bamberg, Bavaria: DGM, 2022
27
Forti M D, Burakovskaya A, Drautz R, et al. Machine learning TCP phases with domain knowledge of the interatomic bond [R]. Bamberg, Bavaria: DGM, 2022
28
Thome P, Richter A, Scholz F, et al. 3D dendrite growth in Ni-base SXs analyzed using microstructure informatics [R]. Bamberg, Bavaria: DGM, 2022
29
Liu Y, Wu J M, Wang Z C, et al. Predicting creep rupture life of Ni-based single crystal superalloys using divide-and-conquer approach based machine learning [J]. Acta Mater., 2020, 195: 454
doi: 10.1016/j.actamat.2020.05.001
30
Xia W S, Zhao X B, Yue L, et al. Microstructural evolution and creep mechanisms in Ni-based single crystal superalloys: A review [J]. J. Alloys Compd., 2020, 819: 152954
doi: 10.1016/j.jallcom.2019.152954
31
Li Y F, Wang L, Zhang G, et al. Creep anisotropy of a 3rd generation nickel-base single crystal superalloy at 850oC [J]. Mater. Sci. Eng., 2019, A760: 26
32
Heep L, Bürger D, Bonnekoh C, et al. The effect of deviations from precise [001] tensile direction on creep of Ni-base single crystal superalloys [J]. Scr. Mater., 2022, 207: 114274
doi: 10.1016/j.scriptamat.2021.114274
33
Liu H, Wang X M, Liu P Y, et al. Experimental and chemo-mechanical analysis of hot corrosion influence on creep properties of DD6 single crystal superalloy in molten NaCl salt [J]. Eng. Fract. Mech., 2022, 260: 108194
doi: 10.1016/j.engfracmech.2021.108194
34
Zhang D X, He J Y, Liang J W. Anisotropic creep fracture mechanism and microstructural evolution in nickel-based single crystal specimen with a center film hole [J]. Theor. Appl. Fract. Mech., 2020, 108: 102680
doi: 10.1016/j.tafmec.2020.102680
35
Pei H Q, Wang J J, Li Z, et al. Oxidation behavior of recast layer of air-film hole machined by EDM technology of Ni-based single crystal blade and its effect on creep strength [J]. Surf. Coat. Technol., 2021, 419: 127285
doi: 10.1016/j.surfcoat.2021.127285
36
Epishin A I, Fedelich B, Viguier B, et al. Creep of single-crystals of nickel-base γ-alloy at temperatures between 1150oC and 1288oC [J]. Mater. Sci. Eng., 2021, A825: 141880
37
Qi D Q, Wang L, Zhao P, et al. Facilitating effect of interfacial grooves on the rafting of nickel-based single crystal superalloy at high temperature [J]. Scr. Mater., 2019, 167: 71
doi: 10.1016/j.scriptamat.2019.04.001
38
Li Y W, Wang L, He Y F, et al. Role of interfacial dislocation networks during secondary creep at elevated temperatures in a single crystal Ni-based superalloy [J]. Scr. Mater., 2022, 217: 114769
doi: 10.1016/j.scriptamat.2022.114769
39
Li Y M, Wang X G, Tan Z H, et al. On dislocation networks and superdislocations in Re-containing nickel-based SX superalloy under different creep conditions [J]. Intermetallics, 2022, 148: 107646
doi: 10.1016/j.intermet.2022.107646
40
Li Y W, Wang L, Zhang G, et al. On the role of topological inversion and dislocation structures during tertiary creep at elevated temperatures for a Ni-based single crystal superalloy [J]. Mater. Sci. Eng., 2021, A809: 140982
41
Ormastroni L M B, Utada S, Rame J, et al. Tensile, low cycle fatigue, and very high cycle fatigue characterizations of advanced single crystal nickel-based superalloys [A]. Superalloys 2020 [C]. Warrendale, PA: TMS, 2020: 341
42
Tang Z H, Wang K D, Dong X, et al. Effect of warm laser shock peening on the low-cycle fatigue behavior of DD6 nickel-based single-crystal superalloy [J]. J. Mater. Eng. Perform., 2021, 30: 2930
doi: 10.1007/s11665-021-05508-7
43
Zhang M, Zhao Y S, Guo Y Y, et al. Effect of overheating events on microstructure and low-cycle fatigue properties of a nickel-based single-crystal superalloy [J]. Metall. Mater. Trans., 2022, 53A: 2214
44
Yang X G, Tan L, Sui T X, et al. Low cycle fatigue behaviour of a single crystal Ni-based superalloy with a central hole: Effect of inhomogeneous rafting microstructure [J]. Int. J. Fatigue, 2021, 153: 106467
doi: 10.1016/j.ijfatigue.2021.106467
45
Zhang B, Wang R Q, Hu D Y, et al. Damage-based low-cycle fatigue lifetime prediction of nickel-based single-crystal superalloy considering anisotropy and dwell types [J]. Fatigue Fract. Eng. Mater. Struct., 2020, 43: 2956
doi: 10.1111/ffe.v43.12
46
Fan Y S, Yang X G, Tan L, et al. Fatigue life evaluation for notched single-crystal Ni-based superalloys considering inhomogeneous rafting microstructure [J]. Int. J. Fatigue, 2023, 166: 107255
doi: 10.1016/j.ijfatigue.2022.107255
47
Hu B, Pei Y L, Gong S K, et al. Orientation dependence of high cycle fatigue behavior of a<111> oriented single-crystal nickel-based superalloy [J]. Metals, 2021, 11: 1248
doi: 10.3390/met11081248
48
Dong J M, Li J R. Effect of etching on fatigue properties of DD6 single-crystal superalloy [J]. J. Mater. Eng. Perform., 2020, 29: 3195
doi: 10.1007/s11665-020-04865-z
49
Zhang Z J, Zhang M Q. Effect of different drilling techniques on high-cycle fatigue behavior of nickel-based single-crystal superalloy with film cooling hole [J]. High Temp. Mater. Proc., 2021, 40: 121
doi: 10.1515/htmp-2020-0072
50
Cervellon A, Hémery S, Kürnsteiner P, et al. Crack initiation mechanisms during very high cycle fatigue of Ni-based single crystal superalloys at high temperature [J]. Acta Mater., 2020, 188: 131
doi: 10.1016/j.actamat.2020.02.012
51
Zhao Z, Li Q, Zhang F, et al. Transition from internal to surface crack initiation of a single-crystal superalloy in the very-high-cycle fatigue regime at 1100oC [J]. Int. J. Fatigue, 2021, 150: 106343
doi: 10.1016/j.ijfatigue.2021.106343
52
Li Y W, Wang D, He Y F, et al. High temperature VHCF of a 3rd generation Ni-based single crystal superalloy with different casting pore sizes [J]. Int. J. Fatigue, 2023, 175: 107804
doi: 10.1016/j.ijfatigue.2023.107804
53
Cervellon A, Torbet C J, Pollock T M. Crack initiation anisotropy of Ni-based SX superalloys in the very high cycle fatigue regime [J]. Mater. Sci. Eng., 2021, A825: 141920
54
Ormastroni L M B, Lopez-Galilea I, Ruttert B, et al. On the impact of an integrated HIP treatment on the very high cycle fatigue life of Ni-based SX superalloys [J]. Metall. Mater. Trans., 2023, 54A: 1469
55
Luo C, Yuan H. Anisotropic thermomechanical fatigue of a nickel-base single-crystal superalloy Part I: Effects of crystal orientations and damage mechanisms [J]. Int. J. Fatigue, 2023, 168: 107438
doi: 10.1016/j.ijfatigue.2022.107438
56
Ge Z C, Xie G, Segersäll M, et al. Influence of Ru on the thermomechanical fatigue deformation behavior of a single crystal superalloy [J]. Int. J. Fatigue, 2022, 156: 106634
doi: 10.1016/j.ijfatigue.2021.106634
57
Kontis P, Ge Z C, Xie G, et al. The role of Ru on the deformation mechanism of a single crystal superalloy during thermomechanical fatigue [R]. San Diego: TMS, 2023
58
Sun J Y, Yang S, Yuan H. Assessment of thermo-mechanical fatigue in a nickel-based single-crystal superalloy CMSX-4 accounting for temperature gradient effects [J]. Mater. Sci. Eng., 2021, A809: 140918
59
Yang J J, Jing F L, Yang Z M, et al. Thermomechanical fatigue damage mechanism and life assessment of a single crystal Ni-based superalloy [J]. J. Alloys Compd., 2021, 872: 159578
doi: 10.1016/j.jallcom.2021.159578
60
Smith R, Lancaster R, Jones J, et al. Lifing the effects of crystallographic orientation on the thermo-mechanical fatigue behaviour of a single-crystal superalloy [J]. Materials, 2019, 12: 998
doi: 10.3390/ma12060998
61
Chen Z H, Li X T, Dong T, et al. The mechanism of thermal corrosion fatigue (TCF) on nickel-based single crystal superalloy and the corresponding structure shape effect [J]. Corros. Sci., 2021, 179: 109142
doi: 10.1016/j.corsci.2020.109142
62
Yuan T Y, Dou M, Liu L, et al. Improving high temperature fretting fatigue performance of nickel-based single crystal superalloy by shot peening [J]. Int. J. Fatigue, 2023, 171: 107563
doi: 10.1016/j.ijfatigue.2023.107563
63
Okazaki M, Balavenkatesh R, Yamagishi S, et al. Fretting fatigue life extension for single crystal Ni-based superalloy by applying optimized surface texturing [A]. Superalloys 2020 [C]. Warrendale, PA: TMS, 2020: 196
64
Reinhart G, Grange D, Abou-Khalil L, et al. Impact of solute flow during directional solidification of a Ni-based alloy: In-situ and real-time X-radiography [J]. Acta Mater., 2020, 194: 68
doi: 10.1016/j.actamat.2020.04.003
65
Perry S J, D'Souza N, Collins D M, et al. An in situ resistance-based method for tracking the temporal evolution of recovery and recrystallization in Ni-base single-crystal superalloy at super-solvus temperatures [J]. Metall. Mater. Trans., 2023, 54A: 1582
66
Niu H Y, Zheng F C, Wang H, et al. An in situ X-ray tomography study on the stress corrosion behavior of a Ni-based single-crystal superalloy [J]. Metall. Mater. Trans., 2023, 54A: 777
67
Liu K L, Wang J S, Wang B, et al. In-situ X-ray tomography investigation of pore damage effects during a tensile test of a Ni-based single crystal superalloy [J]. Mater. Charact., 2021, 177: 111180
doi: 10.1016/j.matchar.2021.111180
68
Huang Y Q, Wang D, Shen J, et al. Initiation of fatigue cracks in a single-crystal nickel-based superalloy at intermediate temperature [A]. Superalloys 2020 [C]. Warrendale, PA: TMS, 2020: 208
69
Dennstedt A, Lopez-Galilea I, Ruttert B, et al. Combining 2D and 3D characterization techniques for determining effects of HIP rejuvenation after fatigue testing of SX microstructures [J]. Metall. Mater. Trans., 2023, 54A: 1535
70
He Y F, Wang S G, Shen J, et al. Evolution of micro-pores in a single crystal nickel-based superalloy during 980oC creep [J]. Acta Metall. Sin. (Engl. Lett.), 2022, 35: 1397
doi: 10.1007/s40195-021-01371-6
71
Sommerschuh M, Wirth J, Merle B, et al. Deformation behaviour of TCP-phases in an additively manufactured Ni-base superalloy studied by 3D X-ray nanotomography and micro-compression tests [R]. Bamberg, Bavaria: DGM, 2022
72
Ren X Y, Lu J X, Zhou J L, et al. In-situ fatigue behavior study of a nickel-based single-crystal superalloy with different orientations [J]. Mater. Sci. Eng., 2022, A855: 143913
73
Duan Q Y, Xue H W, Yang Y H, et al. Study on fracture behavior of nickel-based single crystal superalloy subjected to high temperature fatigue using digital image correlation [J]. Int. J. Fatigue, 2022, 155: 106598
doi: 10.1016/j.ijfatigue.2021.106598
74
Shang Y, Dong Y L, Pei Y L, et al. In situ creep behavior characterization of single crystal superalloy by UV-DIC at 980oC [J]. Coatings, 2019, 9: 598
doi: 10.3390/coatings9100598
75
Ma J Y, Lu J X, Tang L, et al. A novel instrument for investigating the dynamic microstructure evolution of high temperature service materials up to 1150oC in scanning electron microscope [J]. Rev. Sci. Instrum., 2020, 91: 043704
76
Zhou J L, Gao W J, Liu L E, et al. In-situ SEM study on fatigue crack behavior of a nickel-based single crystal alloy at 950oC and 1050oC [J]. Mater. Charact., 2023, 199: 112763
doi: 10.1016/j.matchar.2023.112763
77
Xie H F, Wang J, Wang Z, et al. In situ scanning-digital image correlation for high-temperature deformation measurement of nickel-based single crystal superalloy [J]. Meas. Sci. Technol., 2021, 32: 084008
78
Evangelou A, Soady K A, Lockyer S, et al. On the mechanism of oxidation-fatigue damage at intermediate temperatures in a single crystal Ni-based superalloy [J]. Mater. Sci. Eng., 2019, A742: 648
79
Li Y W, Wang L, Lou L H, et al. Stress effect on rupture mechanisms of a third generation single crystal superalloy crept at ultra-high temperature [J]. Aeron. Manuf. Technol., 2023, 66(4): 48
Xiao Q F, Xu Y M, Liu X L, et al. Oxidation-induced recrystallization and damage mechanism of a Ni-based single-crystal superalloy during creep [J]. Mater. Charact., 2023, 195: 112465
doi: 10.1016/j.matchar.2022.112465
81
le Graverend J B, Lee S. Phenomenological modeling of the effect of oxidation on the creep response of Ni-based single-crystal superalloys [A]. Superalloys 2020 [C]. Warrendale, PA: TMS, 2020: 282
82
Brooking L, Gray S, Dawson K, et al. Analysis of combined static load and low temperature hot corrosion induced cracking in CMSX-4 at 550oC [J]. Corros. Sci., 2020, 163: 108293
doi: 10.1016/j.corsci.2019.108293
83
Duarte Martinez F, Morar N I, Kothari M, et al. Investigation into the effects of salt chemistry and SO2 on the crack initiation of CMSX-4 in static loading conditions [A]. Superalloys 2020 [C]. Warrendale, PA: TMS, 2020: 753
84
Brooking L, Ferguson C, Mason-Flucke J, et al. Measurement and evaluation of co-existing crack propagation in single-crystal superalloys in hot corrosion fatigue environments [A]. Superalloys 2020 [C]. Warrendale, PA: TMS, 2020: 771
85
Jadon J K S, Singh R, Mahato J K. Creep-fatigue interaction behavior of high temperature alloys: A review [J]. Mater. Today: Proc., 2022, 62: 5351
86
Suzuki S, Sakaguchi M. Fatigue crack retardation associated with creep deformation induced by a tension hold in a single crystal Ni-base superalloy [J]. Scr. Mater., 2020, 178: 346
doi: 10.1016/j.scriptamat.2019.11.058
87
Wang Z, Wu W W, Liang J C, et al. Creep-fatigue interaction behavior of nickel-based single crystal superalloy at high temperature by in-situ SEM observation [J]. Int. J. Fatigue, 2020, 141: 105879
doi: 10.1016/j.ijfatigue.2020.105879
88
Okamoto R, Suzuki S, Sakaguchi M, et al. Evolution of short-term creep strain field near fatigue crack in single crystal Ni-based superalloy measured by digital image correlation [J]. Int. J. Fatigue, 2022, 162: 106952
doi: 10.1016/j.ijfatigue.2022.106952
89
Cervellon A, Yi J Z, Corpace F, et al. Creep, fatigue, and oxidation interactions during high and very high cycle fatigue at elevated temperature of nickel-based single crystal superalloys [A]. Superalloys 2020 [C]. Warrendale, PA: TMS, 2020: 185
90
Yu Z Y, Wang X M, Liang H, et al. Thickness debit effect in Ni-based single crystal superalloys at different stress levels [J]. Int. J. Mech. Sci., 2020, 170: 105357
doi: 10.1016/j.ijmecsci.2019.105357
91
Zhang B, Wang R Q, Liu H Y, et al. Low cycle fatigue lifetime and deformation behaviour prediction of nickel-based single crystal superalloy considering thickness debit effect [J]. Eng. Fract. Mech., 2023, 281: 109076
doi: 10.1016/j.engfracmech.2023.109076
92
Lv J J, Zhao Y S, Wang S, et al. Stress state mechanism of thickness debit effect in creep performances of a Ni-based single crystal superalloy [J]. Int. J. Plast., 2022, 159: 103470
doi: 10.1016/j.ijplas.2022.103470
93
Tao X P, Wang X G, Zhou Y Z, et al. Effect of Pt-Al bond-coat on the tensile deformation and fracture behaviors of a second-generation SX Ni-based superalloy at elevated temperatures [J]. Surf. Coat. Technol., 2020, 389: 125640
doi: 10.1016/j.surfcoat.2020.125640
94
Liu Y, Ru Y, Zhang H, et al. Coating-assisted deterioration mechanism of creep resistance at a nickel-based single-crystal superalloy [J]. Surf. Coat. Technol., 2021, 406: 126668
doi: 10.1016/j.surfcoat.2020.126668
95
Cervellon A, Ormastroni L M B, Hervier Z, et al. Damage mechanisms during very high cycle fatigue of a coated and grit-blasted Ni-based single-crystal superalloy [J]. Int. J. Fatigue, 2021, 142: 105962
doi: 10.1016/j.ijfatigue.2020.105962
96
Huang X, Qi H Y, Li S L, et al. Effect of thermal barrier coatings on the fatigue behavior of a single crystal nickel-based superalloy: Mechanism and lifetime modeling [J]. Surf. Coat. Technol., 2023, 454: 129184
doi: 10.1016/j.surfcoat.2022.129184
97
Shang Y, Zhang H, Hou H Z, et al. High temperature tensile behavior of a thin-walled Ni based single-crystal superalloy with cooling hole: In-situ experiment and finite element calculation [J]. J. Alloys Compd., 2019, 782: 619
doi: 10.1016/j.jallcom.2018.12.232
98
Guo Z X, Song Z Y, Fan J, et al. Experimental and analytical investigation on service life of film cooling structure for single crystal turbine blade [J]. Int. J. Fatigue, 2021, 150: 106318
doi: 10.1016/j.ijfatigue.2021.106318
99
Zhang D X, He J Y, Liang J W. Creep rupture mechanism and microstructure evolution around film-cooling holes in nickel-based single crystal superalloy specimen [J]. Eng. Fract. Mech., 2020, 235: 107187
doi: 10.1016/j.engfracmech.2020.107187
100
Li J G, Meng X B, Liu J D, et al. Common solidification defects and inhibition methods in single crystal superalloy turbine blades [J]. Spec. Cast. Nonferrous Alloys, 2021, 41: 1321
Liu L, Sun D J, Huang T W, et al. Directional solidification under high thermal gradient and its application in superalloys processing [J]. Acta Metall. Sin., 2018, 54: 615
doi: 10.11900/0412.1961.2018.00075
Zeng L, Li J, Xia M G, et al. Directional solidification method for superalloy single crystal blade based on solid-liquid interface steady control [P]. US Pat, 0395896A1, 2022
103
Ma D X, Zhao Y X, Xu W T, et al. Influence of seeding materials on epitaxial growth of single crystal superalloys [J]. Chin. J. Nonferrous Met., 2023, 33: 445
Liu X G, Rao Y, Liu P Y, et al. Effect of temperature gradient on solidification microstructure of seeding preparation process for Ni-based single crystal superalloy DD6 [J]. Foundry, 2022, 71: 415
Werner F, Scholz F, Git P, et al. Effects of single crystal growth techniques on dendritic microstructures and small angle orientation defects in Ni-based superalloys [R]. Bamberg, Bavaria: DGM, 2022
107
Git P, Zenk C, Kourner C. Fluidized carbon bed cooling of Ni-based superalloy CMSX-4 [R]. Bamberg, Bavaria: DGM, 2022
108
Yang W C, Hao W S, Sa S P, et al. A multilayer module superimposed wax pattern structure and an efficient method for preparing single crystal blades [P]. Chin Pat, 202210530518.0, 2022
Shen J, Zhang J, Dong J S, et al. Preparation method of high efficiency densely arranged single crystal blades using liquid metal cooling and directional solidification technology [P]. Chin Pat, 202011457377.1, 2022
Aveson J W, Tennant P A, Foss B J, et al. On the origin of sliver defects in single crystal investment castings [J]. Acta Mater., 2013, 61: 5162
doi: 10.1016/j.actamat.2013.04.071
111
Sun D J, Liu L, Huang T W, et al. Formation of lateral sliver defects in the platform region of single-crystal superalloy turbine blades [J]. Metall. Mater. Trans., 2019, 50A: 1119
112
Huang Y Q, Shen J, Wang D, et al. Formation of sliver defect in Ni-based single crystal superalloy [J]. Metall. Mater. Trans., 2020, 51A: 99
113
Ma D X, Wang F, Xu W T, et al. Formation of sliver defects in single crystal castings of superalloys [J]. Acta Metall. Sin., 2020, 56: 301
Xu W L, Wang F, Ma D X, et al. Sliver defect formation in single crystal Ni-based superalloy castings [J]. Mater. Des., 2020, 196: 109138
doi: 10.1016/j.matdes.2020.109138
115
Xia H X, Yang Y H, Feng Q S, et al. Generation mechanism and motion behavior of sliver defect in single crystal Ni-based superalloy [J]. J. Mater. Sci. Technol., 2023, 137: 232
doi: 10.1016/j.jmst.2022.07.045
116
Wang X J, Liu L, Huang T W, et al. A review on the influence of carbon addition on the solidification defects in nickel-based single crystal superalloys [J]. Mater. Rep., 2020, 34: 3148
Ma D X. Effect of casting geometry on the freckle formation during single crystal solidification of superalloys [J]. Rare. Met. Mater. Eng., 2021, 50: 4357
Wang Z C, Li J R, Liu S Z, et al. Investigation on freckle formation of nickel-based single crystal superalloy specimens with suddenly reduced cross section [J]. J. Alloys Compd., 2022, 918: 165631
doi: 10.1016/j.jallcom.2022.165631
120
Ren N, Li J, Panwisawas C, et al. Insight into the sensitivities of freckles in the directional solidification of single-crystal turbine blades [J]. J. Manuf. Process., 2022, 77: 219
doi: 10.1016/j.jmapro.2022.03.019
121
Zhang H J, Liu X S, Ma D X, et al. Digital twin for directional solidification of a single-crystal turbine blade [J]. Acta Mater., 2023, 244: 118579
doi: 10.1016/j.actamat.2022.118579
122
Szeliga D. Reduction of freckle defect in single-crystal blade root by controlling local cooling conditions [J]. Metall. Mater. Trans., 2022, 53A: 3224
123
Newell M, D’Souza N, Green N R. Formation of low angle boundaries in Ni-based superalloys [J]. Int. J. Cast Met. Res., 2009, 22: 66
doi: 10.1179/136404609X367353
124
Bogdanowicz W, Krawczyk J, Paszkowski R, et al. Variation of crystal orientation and dendrite array generated in the root of SX turbine blades [J]. Materials, 2019, 12: 4126
doi: 10.3390/ma12244126
125
Shi Z W, Zheng W, Lu Y Z, et al. Sand-burning reaction of ceramic shell for directional solidification of nickel-based superalloy [J]. Chin. J. Mater. Res., 2021, 35: 251
Yao J S, Dong L P, Wu Z Q, et al. Interfacial reaction mechanism between ceramic mould and single crystal superalloy for manufacturing turbine blade [J]. Materials, 2022, 15: 5514
doi: 10.3390/ma15165514
127
Orlov M R. Pore formation in single-crystal turbine rotor blades during directional solidification [J]. Russ. Metall., 2008, 2008: 56
doi: 10.1134/S0036029508010114
128
Xiong W, Huang Z W, Xie G, et al. On the inducement of recrystallization in single-crystal superalloy [J]. Metall. Mater. Trans., 2022, 53A: 1585
129
Xiong W, Huang Z W, Xie G, et al. The effect of deformation temperature on recrystallization in a Ni-based single crystal superalloys [J]. Mater. Des., 2022, 222: 111042
doi: 10.1016/j.matdes.2022.111042
130
Long M, Leriche N, Niane N T, et al. A new experimental and simulation methodology for prediction of recrystallization in Ni-based single crystal superalloys during investment casting [J]. J. Mater. Process. Technol., 2022, 306: 117624
doi: 10.1016/j.jmatprotec.2022.117624
131
Xiong W, Xie G, Zhang J. Recrystallization in Ni-based single crystal superalloys [R]. Bamberg, Bavaria: DGM, 2022
132
Zhang J, Song F Y. Research and applications of hot isostatic pressing technology in nickel-based single crystal superalloy [J]. Sci. Technol. Rev., 2020, 38(2): 11
doi: 10.20506/rst.issue.38.1.2937
Horst O M, Ruttert B, Bürger D, et al. On the rejuvenation of crept Ni-base single crystal superalloys (SX) by hot isostatic pressing (HIP) [J]. Mater. Sci. Eng., 2019, A758: 202
134
Lopez-Galilea I, Hecker L, Epishin A, et al. Super-solidus hot isostatic pressing heat treatments for advanced single crystal Ni-base superalloys [J]. Metall. Mater. Trans., 2023, 54A: 1509
135
Ruttert B, Lopez-Galilea I, Theisen W. An integrated HIP heat-treatment of a single crystal Ni-base superalloy [A]. Superalloys 2020 [C]. Warrendale, PA: TMS, 2020: 391
136
Lan J, Xuan W D, Han Y, et al. Enhanced high temperature elongation of nickel based single crystal superalloys by hot isostatic pressing [J]. J. Alloys Compd., 2019, 805: 78
doi: 10.1016/j.jallcom.2019.07.056
137
Xuan W D, Zhang X Y, Zhao Y J, et al. Mechanism of improved intermediate temperature plasticity of nickel-base single crystal superalloy with hot isostatic pressing [J]. J. Mater. Res. Technol., 2021, 14: 1609
doi: 10.1016/j.jmrt.2021.07.010
138
He S L, Zhao Y S, Lu F, et al. Effects of hot isostatic pressure on microdefects and stress rupture life of second-generation nickel-based single crystal superalloy in as-cast and as-solid-solution states [J]. Acta Metall. Sin., 2020, 56: 1195
doi: 10.11900/0412.1961.2020.00020
He Y F, Wang L, Wang D, et al. Effect of hot isostatic pressing on microstructure of a third-generation single crystal superalloy DD33 [J]. Chin. J. Mater. Res., 2022, 36: 649
doi: 10.11901/1005.3093.2021.490
Nie X F, Li Y H, He W F, et al. Research progress and prospect of laser shock peening technology in aero-engine components [J]. J. Mech. Eng., 2021, 57(16): 293
doi: 10.3901/JME.2021.16.293
Lu G X, Liu J D, Qiao H C, et al. Nonuniformity of morphology and mechanical properties on the surface of single crystal superalloy subjected to laser shock peening [J]. J. Alloys Compd., 2016, 658: 721
doi: 10.1016/j.jallcom.2015.10.238
142
Geng Y X, Dong X, Wang K D, et al. Evolutions of microstructure, phase, microhardness, and residual stress of multiple laser shock peened Ni-based single crystal superalloy after short-term thermal exposure [J]. Opt. Laser Technol., 2020, 123: 105917
doi: 10.1016/j.optlastec.2019.105917
143
Yao X, Ding Q, Zhao X, et al. Microstructural rejuvenation in a Ni-based single crystal superalloy [J]. Mater. Today Nano, 2022, 17: 100152
144
Rettberg L H, Callahan P G, Goodlet B R, et al. Rejuvenation of directionally solidified and single-crystal nickel-base superalloys [J]. Metall. Mater. Trans., 2021, 52A: 1609
145
Utada S, Ormastroni L M B, Rame J, et al. VHCF life of AM1 Ni-based single crystal superalloy after pre-deformation [J]. Int. J. Fatigue, 2021, 148: 106224
doi: 10.1016/j.ijfatigue.2021.106224
146
Utada S, Rame J, Hamadi S, et al. High-temperature pre-deformation and rejuvenation treatment on the microstructure and creep properties of Ni-based single-crystal superalloys [A]. Superalloys 2020 [C]. Warrendale, PA: TMS, 2020: 240
147
Liu C G, Yang Z Y, Zheng S J, et al. Effect of solution temperature in recovery heat treatment on microstructure and stress rupture properties of single crystal alloy DD11 [J]. Foundry, 2021, 70: 560
Ruttert B, Horst O, Lopez-Galilea I, et al. Rejuvenation of single-crystal Ni-base superalloy turbine blades: Unlimited service life [J]. Metall. Mater. Trans., 2018, 49A: 4262
149
Kalfhaus T, Schneider M, Ruttert B, et al. Repair of Ni-based single-crystal superalloys using vacuum plasma spray [J]. Mater. Des., 2019, 168: 107656
doi: 10.1016/j.matdes.2019.107656
150
Hinchy E P, Barron D, Pomeroy M J, et al. Diffusion braze homogenisation and contraction during re-repair heat treatments of a single crystal nickel-based superalloy [J]. J. Alloys Compd., 2021, 857: 157560
doi: 10.1016/j.jallcom.2020.157560
151
Chen H, Lu Y Y, Luo D, et al. Epitaxial laser deposition of single crystal Ni-based superalloys: Repair of complex geometry [J]. J. Mater. Process. Technol., 2020, 285: 116782
doi: 10.1016/j.jmatprotec.2020.116782
152
Rong P, Yu W J, Wang D W, et al. The inhibition and repairation of the solidification cracks in laser cladded nickel-based single crystal alloy [J]. Appl. Laser, 2020, 40: 978
Lang Z Q, Ye Z, Yang J, et al. Research progress of repair technology for surface defects of single crystal superalloy [J]. Chin. J. Mater. Res., 2021, 35: 161
Xu Q Y, Xia H X. Research progress on numerical simulation of directional solidification of nickel-based superalloy turbine blade [J]. Aeroengine, 2021, 47(4): 141
Qin L. Multi-physics fully-coupled modelling and analysis of solidification defects formation for directionally solidified hollow turbine blades in large-size [D]. Xi'an: Northwestern Polytechnical University, 2018
Yan X W, Xu Q Y, Tian G Q, et al. Multi-scale modeling of liquid-metal cooling directional solidification and solidification behavior of nickel-based superalloy casting [J]. J. Mater. Sci. Technol., 2021, 67: 36
doi: 10.1016/j.jmst.2020.06.051
157
Yan X W, Zhang H, Tang N, et al. Multi-scale simulation of single crystal hollow turbine blade manufactured by liquid metal cooling process [J]. Prog. Nat. Sci.: Mater. Int., 2018, 28: 78
doi: 10.1016/j.pnsc.2018.01.003
158
Huo M, Liu L, Yang W C, et al. Dendrite growth and defects formation with increasing withdrawal rates in the rejoined platforms of Ni-based single crystal superalloys [J]. Vacuum, 2019, 161: 29
doi: 10.1016/j.vacuum.2018.12.013
159
Han D Y, Jiang W G, Xiao J H, et al. Investigation on freckle formation and evolution of single-crystal nickel-based superalloy specimens with different thicknesses and abrupt cross-section changes [J]. J. Alloys Compd., 2019, 805: 218
doi: 10.1016/j.jallcom.2019.07.045
160
Bellomo N P, Öztürk I, Günzel M, et al. Identifying critical defect sizes from pore clusters in nickel-based superalloys using automated analysis and casting simulation [J]. Metall. Mater. Trans., 2023, 54A: 1699
161
Zeng L, Lin J, Xia M X, et al. Directional solidification method for superalloy single crystal blade based on solid-liquid interface steady control [P]. US Pat, 20220395896A1, 2022
162
Guo X, Yang A T, Zhao D Y, et al. Research on displacement and wall thickness evolution of gas turbine blade during casting process based on cantilever structure core [J]. J. Chin. Soc. Power Eng., 2021, 41: 452
Xia S X, Liu Z F, Guo J Z, et al. A coupled numerical scheme for simulating the process of liquid metal cooling process [R]. Banff, Alberta: CIM, 2023
164
Schleifer F, Fleck M, Holzinger M, et al. Phase-field modeling of γ' and γ″ precipitate size evolution during heat treatment of Ni-based superalloys [A]. Superalloys 2020 [C]. Warrendale, PA: TMS, 2020: 500
165
Yang M. Phase-field simulation of γʹ morphology evolution for Ni-based alloys considering elastic and plastic fields [D]. Xi'an: Northwestern Polytechnical University, 2019
Li Y, Liang X Y, Yu Y F, et al. Review on additive manufacturing of single-crystal nickel-based superalloys [J]. Chin. J. Mech. Eng.: Addit. Manuf. Front., 2022, 1: 100019
167
Yang J J, Li F Z, Pan A Q, et al. Microstructure and grain growth direction of SRR99 single-crystal superalloy by selective laser melting [J]. J. Alloys Compd., 2019, 808: 151740
doi: 10.1016/j.jallcom.2019.151740
168
Ci S W, Liang J J, Li J G, et al. Microstructure and stress-rupture property of DD32 nickel-based single crystal superalloy fabricated by additive manufacturing [J]. J. Alloys Compd., 2021, 854: 157180
doi: 10.1016/j.jallcom.2020.157180
169
Bürger D, Parsa A B, Ramsperger M, et al. Creep properties of single crystal Ni-base superalloys (SX): A comparison between conventionally cast and additive manufactured CMSX-4 materials [J]. Mater. Sci. Eng., 2019, A762: 138098
170
Ormastroni L M B, Lopez-Galilea I, Pistor J, et al. Very high cycle fatigue durability of an additively manufactured single-crystal Ni-based superalloy [J]. Addit. Manuf., 2022, 54: 102759
171
Bäreis J, Semjatov N, Renner J, et al. Electron-optical in-situ crack monitoring during electron beam powder bed fusion of the Ni-Base superalloy CMSX-4 [J]. Prog. Addit. Manuf., doi: 10.1007/s40964-022-00357-9
doi: 10.1007/s40964-022-00357-9
172
Tinat M R A, Uddagiri M, Steinbach I, et al. Numerical simulations to predict the melt pool dynamics and heat transfer in additive manufacturing process of Ni-based superalloy (CMSX-4) [R]. Bamberg, Bavaria: DGM, 2022
173
Ramsperger M, Eichler S. Electron beam based additive manufacturing of Alloy 247 for turbine engine application: From research towards industrialization [J]. Metall. Mater. Trans., 2023, 54A: 1730
174
Xiong W, Guo A X Y, Zhan S, et al. Refractory high-entropy alloys: A focused review of preparation methods and properties [J]. J. Mater. Sci. Technol., 2023, 142: 196
doi: 10.1016/j.jmst.2022.08.046
175
Hua X J, Hu P, Xing H R, et al. Development and property tuning of refractory high-entropy alloys: A review [J]. Acta Metall. Sin. (Engl. Lett.), 2022, 35: 1231
doi: 10.1007/s40195-022-01382-x
176
Xu Z Q, Ma Z L, Wang M, et al. Design of novel low density refractory high entropy alloys for high-temperature applications [J]. Mater. Sci. Eng., 2019, A755: 318
177
Wang W, Zhang Z T, Niu J Z, et al. Effect of Al addition on structural evolution and mechanical properties of the Al x HfNbTiZr high-entropy alloys [J]. Mater. Today Commun., 2018, 16: 242
178
Zhang H, Zhao Y Z, Cai J L, et al. High-strength NbMoTaX refractory high-entropy alloy with low stacking fault energy eutectic phase via laser additive manufacturing [J]. Mater. Des., 2021, 201: 109462
doi: 10.1016/j.matdes.2021.109462
179
Yurchenko N, Panina E, Tikhonovsky M, et al. Structure and mechanical properties of an in situ refractory Al20Cr10Nb15Ti20V25Zr10 high entropy alloy composite [J]. Mater. Lett., 2020, 264: 127372
doi: 10.1016/j.matlet.2020.127372
180
Kang B, Kong T, Ryu H J, et al. Superior mechanical properties and strengthening mechanisms of lightweight Al x CrNbVMo refractory high-entropy alloys (x = 0, 0.5, 1.0) fabricated by the powder metallurgy process [J]. J. Mater. Sci. Technol., 2021, 69: 32
doi: 10.1016/j.jmst.2020.07.012
181
Senkov O N, Jensen J K, Pilchak A L, et al. Compositional variation effects on the microstructure and properties of a refractory high-entropy superalloy AlMo0.5NbTa0.5TiZr [J]. Mater. Des., 2018, 139: 498
doi: 10.1016/j.matdes.2017.11.033
182
Tong C J, Chen M R, Yeh J W, et al. Mechanical performance of the Al x CoCrCuFeNi high-entropy alloy system with multiprincipal elements [J]. Metall. Mater. Trans., 2005, 36A: 1263
183
Liu Y, Zhang Y, Zhang H, et al. Microstructure and mechanical properties of refractory HfMo0.5NbTiV0.5Si x high-entropy composites [J]. J. Alloys Compd., 2017, 694: 869
doi: 10.1016/j.jallcom.2016.10.014
184
Chen H, Kauffmann A, Laube S, et al. Contribution of lattice distortion to solid solution strengthening in a series of refractory high entropy alloys [J]. Metall. Mater. Trans., 2018, 49A: 772
185
Han Z D, Chen N, Zhao S F, et al. Effect of Ti additions on mechanical properties of NbMoTaW and VNbMoTaW refractory high entropy alloys [J]. Intermetallics, 2017, 84: 153
doi: 10.1016/j.intermet.2017.01.007
186
Waseem O A, Lee J, Lee H M, et al. The effect of Ti on the sintering and mechanical properties of refractory high-entropy alloy Ti x WTaVCr fabricated via spark plasma sintering for fusion plasma-facing materials [J]. Mater. Chem. Phys., 2018, 210: 87
doi: 10.1016/j.matchemphys.2017.06.054
187
Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts [J]. Acta Mater., 2017, 122: 448
doi: 10.1016/j.actamat.2016.08.081
188
Sun J, Zhao W X, Yan P, et al. High temperature tensile properties of as-cast and forged CrMnFeCoNi high entropy alloy [J]. Mater. Sci. Eng., 2022, A850: 143570
189
Kuznetsov A V, Shaysultanov D G, Stepanov N D, et al. Tensile properties of an AlCrCuNiFeCo high-entropy alloy in as-cast and wrought conditions [J]. Mater. Sci. Eng., 2012, A533: 107
190
Kumar P, Kim S J, Yu Q, et al. Compressive vs. tensile yield and fracture toughness behavior of a body-centered cubic refractory high-entropy superalloy Al0.5Nb1.25Ta1.25TiZr at temperatures from ambient to 1200oC [J]. Acta Mater., 2023, 245: 118620
doi: 10.1016/j.actamat.2022.118620
191
Xiao W C, Liu S F, Zhao Y L, et al. A novel single-crystal L12-strengthened Co-rich high-entropy alloy with excellent high-temperature strength and antioxidant property [J]. J. Mater. Res. Technol., 2023, 23: 2343
doi: 10.1016/j.jmrt.2023.01.182
192
Tsao T K, Yeh A C, Kuo C M, et al. The high temperature tensile and creep behaviors of high entropy superalloy [J]. Sci. Rep., 2017, 7: 12658
doi: 10.1038/s41598-017-13026-7
193
Daoud H M, Manzoni A M, Wanderka N, et al. High-temperature tensile strength of Al10Co25Cr8Fe15Ni36Ti6 compositionally complex alloy (high-entropy alloy) [J]. JOM, 2015, 67: 2271
doi: 10.1007/s11837-015-1484-7
194
Gadelmeier C, Yang Y, Glatzel U, et al. Creep strength of refractory high-entropy alloy TiZrHfNbTa and comparison with Ni-base superalloy CMSX-4 [J]. Cell Rep. Phys. Sci., 2022, 3: 100991
195
Xu Z, Li G, Zhou Y, et al. Tension-compression asymmetry of nickel-based superalloys: A focused review [J]. J. Alloys Compd., 2023, 945: 169313
doi: 10.1016/j.jallcom.2023.169313