Please wait a minute...
Acta Metall Sin  2022, Vol. 58 Issue (4): 551-566    DOI: 10.11900/0412.1961.2022.00061
Overview Current Issue | Archive | Adv Search |
Microstructure Control and Strengthening Mechanism of High Strength Cold Rolled Dual Phase Steels for Automobile Applications
CHU Shuangjie1,2(), MAO Bo1(), HU Guangkui2
1.School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2.Baoshan Iron & Steel Co. , Ltd. , Shanghai 201900, China
Cite this article: 

CHU Shuangjie, MAO Bo, HU Guangkui. Microstructure Control and Strengthening Mechanism of High Strength Cold Rolled Dual Phase Steels for Automobile Applications. Acta Metall Sin, 2022, 58(4): 551-566.

Download:  HTML  PDF(4642KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Steels have been critical in the rapid development of the global automobile industry. Among all automotive steels, dual phase (DP) steels have been extensively used as the mechanical components and outer plates in automobiles, owing to their excellent mechanical properties, desirable weldability and paintability, and low manufacturing cost. DP steels are beneficial in reducing the weight and increasing the safety of automobiles. The optimization of alloy elements and microstructure are essential for the engineering performance of DP steels. Understanding the relationship between their mechanical properties and microstructural features as well as the factors affecting the microstructure is of utmost importance. This study reviews the recent advances in the research on the microstructure evolution and mechanical properties of high strength cold-rolled DP steels for automobile applications. First, the alloy design principles and microstructure tailoring mechanism are summarized. Then, the microstructure evolution during thermal-mechanical processing, which includes rolling, intercritical annealing, subsequent cooling, and over-aging process is discussed. Thereafter, the mechanical properties and failure mechanism of DP steels as well as their relationship with the microstructural features are analyzed. Furthermore, the related challenges and future research directions are discussed and proposed, respectively.

Key words:  automotive steel      dual phase steel      microstructure      mechanical property     
Received:  17 February 2022     
ZTFLH:  TG142.1  
Fund: National Natural Science Foundation of China(52101046)
About author:  MAO Bo, Tel: (021)34202952, E-mail: bmao@sjtu.edu.cn
CHU Shuangjie, professor, Tel: (021)26648302, E-mail: sjchu@baosteel.com

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00061     OR     https://www.ams.org.cn/EN/Y2022/V58/I4/551

Fig.1  Phase transformation process of dual phase steel (a) and its typical microstructure (b)
Fig.2  Effect of Al and Mo alloy elements on the microstructure of dual phase steels (a-c) (Φ, φ1?Euler angles)[28]
Fig.3  Microstructure evolution of dual phase steels during thermo-mechanical processing (Ac1 represents the critical temperature at which pearlite transforms to austenite during heating and Ac3 represents the final critical temperature at which free ferrite is completely transformed into austenite during heating)[33-35] (F—ferrite, M—martensite, ND—normal direction, RD—rolling direction)
Fig.4  Effect of hot rolling parameters on the microstructure and texture of dual phase steels (φ2?Euler angle)[34]
Fig.5  Effects of intercritical annealing parameters on the microstructure evolution of dual phase steels (vh—heating rate, T—annealing temperature, t—holding time, vc—cooling rate, MLI—mean linear intercept)[47]
Fig.6  Effect of subsequent cooling rate on the microstructure of dual phase steels[47]
(a, b) microstructures of the DP steels after intercritical annealing with a cooling rate of 140 K/s (a) and 20 K/s (b) (c) effect of colling time on the fraction of martensite and austenite in the DP steel
Fig.7  Microstructure evolution of dual phase steels during over-aging process (a-f) [60]
Fig.8  The effect of martensite volume fraction on the mechanical properties of DP steels[70]
(a) microstructures of the DP steel with different volume fractions of martensite
(b) stress-strain relationship of DP steels
(c) the evolution of strain hardening rate (dσ / dε) with plastic strain of DP steels with different volume fractions of martensite (σ —stress, ε —strain, σ0 —yield strength)
Fig.9  Mechanical response of dual phase steels during nano-indentation testings[73]
(a) areas for testing (b) force-displacement curves in different areas
(c-e) cumulative undersize vs nano-hardness of ferrite in different locations
Fig.10  Fracture initiation mechanism in dual phase steels[87] (TD—transverse direction)
(a) 3D perspective views of microvoids at different strain levels
(b) a typical microvoid showing cracks initiates between two adjacent martensite grains
(c, d) EBSD analyses of a microvoid initiated from martensite cracking
Fig.11  Fracture mechanisms of three dual phase steels containing different volume fractions of martensite (Vm)[92] (GNDs—geometrically necessary dislocations)
(a1-a3) microstructures (b1-b3) stress and strain distributions of DP steels
(c1-c3) cracking mechanisms of DP steels with different volume fractions of martensite
1 Kuziak R, Kawalla R, Waengler S. Advanced high strength steels for automotive industry [J]. Arch. Civil Mech. Eng., 2008, 8: 103
2 Peng X R. Analysis of steel market in China automobile industry [J]. Metall. Econ. Manage., 2021, (6): 26
彭孝仁. 我国汽车行业用钢市场分析 [J]. 冶金经济与管理, 2021, (6): 26
3 Wagoner R H, Smith G. Advanced high strength steel workshop [R]. Arlington, Virginia, USA, 2006, 1: 122
4 Funakawa Y, Nagataki Y. High strength steel sheets for weight reduction of automobiles [J]. JFE Tech. Rep., 2019, 24: 1
5 Hayami S, Furukawa T. Micro alloying 75 [A]. Proceeding of a Symposium on High Strength, Low-Alloy Steels, Products and Process [C]. New York: Union Carbide Corp., 1975: 78
6 Rana R, Singh S B. Automotive Steels: Design, Metallurgy, Processing and Applications [M]. Cambridge: Woodhead Publishing, 2016: 1
7 Zhao Z Z, Tong T T, Zhao A M, et al. Microstructure, mechanical properties and work hardening behavior of 1300 MPa grade 0.14C-2.72Mn-1.3Si steel [J]. Acta Metall Sin., 2014, 50: 1153
赵征志, 佟婷婷, 赵爱民 等. 1300 MPa级0.14C-2.72Mn-1.3Si钢的显微组织和力学性能及加工硬化行为 [J]. 金属学报, 2014, 50: 1153
8 Olsson K, Gladh M, Hedin J E, et al. Microalloyed high-strength steels [J]. Adv. Mater. Processes, 2006, 164: 44
9 Rashid M S. Dual phase steels [J]. Annu. Rev. Mater. Sci., 1981, 11: 245
10 Davies R G. Early stages of yielding and strain aging of a vanadium-containing dual-phase steel [J]. Metall. Trans., 1979, 10A: 1549
11 Tasan C C, Diehl M, Yan D, et al. An overview of dual-phase steels: Advances in microstructure-oriented processing and micromechanically guided design [J]. Annu. Rev. Mater. Res., 2015, 45: 391
12 Sarwar M, Ahmad E, Qureshi K A, et al. Influence of epitaxial ferrite on tensile properties of dual phase steel [J]. Mater. Des., 2007, 28: 335
13 Kalhor A, Taheri A K, Mirzadeh H, et al. Processing, microstructure adjustments, and mechanical properties of dual phase steels: A review [J]. Mater. Sci. Technol., 2021, 37: 561
14 Zhao N, Liu X W, Sun M J, et al. Microstructure and fatigue properties of low temperature coiling hot-rolled dual phase steel [J]. Heat Treat. Met., 2021, 46(5): 55
赵 楠, 刘学伟, 孙明军 等. 低温卷取热轧双相钢的显微组织及疲劳性能 [J]. 金属热处理, 2021, 46(5): 55
15 Walunj M G, Mandal G K, Ranjan R K, et al. Role of dew points and Fe pre-coats on the galvanizing and galvannealing of dual phase steel [J]. Surf. Coat. Technol., 2021, 422: 127573
16 Soto R, Saikaly W, Bano X, et al. Statistical and theoretical analysis of precipitates in dual-phase steels microalloyed with titanium and their effect on mechanical properties [J]. Acta Mater., 1999, 47: 3475
17 Xia M, Biro E, Tian Z, et al. Effects of heat input and martensite on HAZ softening in laser welding of dual phase steels [J]. ISIJ Int., 2008, 48: 809
18 De La Concepción V L, Lorusso H N, Svoboda H G. Effect of carbon content on microstructure and mechanical properties of dual phase steels [J]. Proced. Mater. Sci., 2015, 8: 1047
19 Mukherjee K, Hazra S S, Militzer M. Grain refinement in dual-phase steels [J]. Metall. Mater. Trans., 2009, 40A: 2145
20 Calcagnotto M, Ponge D, Raabe D. On the effect of manganese on grain size stability and hardenability in ultrafine-grained ferrite/martensite dual-phase steels [J]. Metall. Mater. Trans., 2012, 43A: 37
21 Ye J Y, Zhao Z Z, Zhang Y H, et al. Effects of Si and Cr on microstructure and mechanical properties of ultra high strength dual-phase steel [J]. Iron Steel, 2015, 50(3): 78
叶洁云, 赵征志, 张迎晖 等. 硅和铬对超高强双相钢组织和性能的影响 [J]. 钢铁, 2015, 50(3): 78
22 Nouri A, Saghafian H, Kheirandish S. Effects of silicon content and intercritical annealing on manganese partitioning in dual phase steels [J]. J. Iron Steel Res. Int., 2010, 17: 44
23 Terao N, Cauwe B. Influence of additional elements (Mo, Nb, Ta and B) on the mechanical properties of high-manganese dual-phase steels [J]. J. Mater. Sci., 1988, 23: 1769
24 Han Q H, Kang Y L, Zhao X M, et al. Microstructure and properties of C-Si-Mn-Cr (Mo) cold rolled DP980 steels [A]. Annual Cold Rolling Plates Technology Conference [C]. Baotou: China Metal Society, 2009: 244
韩启航, 康永林, 赵显蒙 等. C-Si-Mn-Cr(Mo)系 980MPa级冷轧双相钢的组织性能研究 [A]. 2009年全国冷轧板带生产技术交流会论文集 [C]. 包头: 中国金属学会, 2009: 244
25 Zhao Z Z, Niu F, Tang D, et al. Microstructure and properties of ultra-high strength cold-rolled dual phase steel [J]. J. Univ. Sci. Technol. Beijing, 2010, 32: 1287
赵征志, 牛 枫, 唐 荻 等. 超高强度冷轧双相钢组织与性能 [J]. 北京科技大学学报, 2010, 32: 1287
26 Zhang X H, Zhu G H, Mao W M. Alloying design and composition control of 800MPa grade cold rolled dual phase steel [J]. Steelmaking, 2010, 26(5): 16
张学辉, 朱国辉, 毛卫民. 800MPa级双相钢的合金化设计及成分控制 [J]. 炼钢, 2010, 26(5): 16
27 Kamikawa N, Hirohashi M, Sato Y, et al. Tensile behavior of ferrite-martensite dual phase steels with nano-precipitation of vanadium carbides [J]. ISIJ Int., 2015, 55: 1781
28 Kang J Y, Lee H C, Han S H. Effect of Al and Mo on the textures and microstructures of dual phase steels [J]. Mater. Sci. Eng., 2011, A530: 183
29 Bezobrazov Y A, Kolbasnikov N G, Naumov A A. High strength dual-phase steel structure evolution during hot rolling [A]. Materials Science and Technology [C]. Pittsburgh, Pennsylvania: The Association for Iron & Steel Technology, 2012
30 Nikkhah S, Mirzadeh H, Zamani M. Fine tuning the mechanical properties of dual phase steel via thermomechanical processing of cold rolling and intercritical annealing [J]. Mater. Chem. Phys., 2019, 230: 1
31 Dai J G, Meng Q G, Zheng H X. High-strength dual-phase steel produced through fast-heating annealing method [J]. Results Mater., 2020, 5: 100069
32 Zamani M, Mirzadeh H, Maleki M. Enhancement of mechanical properties of low carbon dual phase steel via natural aging [J]. Mater. Sci. Eng., 2018, A734: 178
33 Xiong Z P, Kostryzhev A G, Stanford N E, et al. Microstructures and mechanical properties of dual phase steel produced by laboratory simulated strip casting [J]. Mater. Des., 2015, 88: 537
34 Waterschoot T, Kestens L, De Cooman B C. Hot rolling texture development in CMnCrSi dual-phase steels [J]. Metall. Mater. Trans., 2002, 33A: 1091
35 Mao B, Chu S J, Zhang L Y, et al. Effect of intercritical annealing temperature on microstructure, mechanical properties and fracture behavior of high strength cold rolled DP980 [J]. Hot Working Technol., 2014, 43(20): 157
毛 博, 储双杰, 张理扬 等. 两相区退火温度对高强冷轧DP980显微组织力学性能和断裂行为的影响 [J]. 热加工工艺, 2014, 43(20): 157
36 Mondal D K, Ray R K. Development of {111} texture during cold rolling and recrystallization of a C-Mn-V dual-phase steel [J]. Mater. Sci. Eng., 1992, A158: 147
37 Dillien S, Seefeldt M, Allain S, et al. EBSD study of the substructure development with cold deformation of dual phase steel [J]. Mater. Sci. Eng., 2010, A527: 947
38 Salehi A R, Serajzadeh S, Taheri A K. A study on the microstructural changes in hot rolling of dual-phase steels [J]. J. Mater. Sci., 2006, 41: 1917
39 Han S H, Choi S H, Choi J K, et al. Effect of hot-rolling processing on texture and r-value of annealed dual-phase steels [J]. Mater. Sci. Eng., 2010, A527: 1686
40 Zheng C W, Raabe D. Interaction between recrystallization and phase transformation during intercritical annealing in a cold-rolled dual-phase steel: A cellular automaton model [J]. Acta Mater., 2013, 61: 5504
41 Speich G R, Demarest V A, Miller R L. Formation of austenite during intercritical annealing of dual-phase steels [J]. Metall. Mater. Trans., 1981, 12A: 1419
42 Chowdhury S G, Pereloma E V, Santos D. Evolution of texture at the initial stages of continuous annealing of cold rolled dual-phase steel: Effect of heating rate [J]. Mater. Sci. Eng., 2008, A480: 540
43 Toji Y, Yamashita T, Nakajima K, et al. Effect of Mn partitioning during intercritical annealing on following γ→α transformation and resultant mechanical properties of cold-rolled dual phase steels [J]. ISIJ Int., 2011, 51: 818
44 Jamei F, Mirzadeh H, Zamani M. Synergistic effects of holding time at intercritical annealing temperature and initial microstructure on the mechanical properties of dual phase steel [J]. Mater. Sci. Eng., 2019, A750: 125
45 Sun S J, Pugh M. Manganese partitioning in dual-phase steel during annealing [J]. Mater. Sci. Eng., 2000, A276: 167
46 Nouroozi M, Mirzadeh H, Zamani M. Effect of microstructural refinement and intercritical annealing time on mechanical properties of high-formability dual phase steel [J]. Mater. Sci. Eng., 2018, A736: 22
47 Calcagnotto M, Ponge D, Raabe D. Microstructure control during fabrication of ultrafine grained dual-phase steel: Characterization and effect of intercritical annealing parameters [J]. ISIJ Int., 2012, 52: 874
48 Bellavoine M, Dumont M, Dehmas M, et al. Ferrite recrystallization and austenite formation during annealing of cold-rolled advanced high-strength steels: In situ synchrotron X-ray diffraction and modeling [J]. Mater. Charact., 2019, 154: 20
49 Peranio N, Roters F, Raabe D. Microstructure evolution during recrystallization in dual-phase steels [J]. Mater. Sci. Forum, 2012, 715-716: 13
50 Chbihi A, Barbier D, Germain L, et al. Interactions between ferrite recrystallization and austenite formation in high-strength steels [J]. J. Mater. Sci., 2014, 49: 3608
51 Bos C, Mecozzi M G, Sietsma J. A microstructure model for recrystallisation and phase transformation during the dual-phase steel annealing cycle [J]. Computat. Mater. Sci., 2010, 48: 692
52 Ollat M, Militzer M, Massardier V, et al. Mixed-mode model for ferrite-to-austenite phase transformation in dual-phase steel [J]. Computat. Mater. Sci., 2018, 149: 282
53 Ashrafi H, Shamanian M, Emadi R, et al. A novel and simple technique for development of dual phase steels with excellent ductility [J]. Mater. Sci. Eng., 2017, A680: 197
54 Hüseyin A, Havva K Z, Ceylan K. Effect of intercritical annealing parameters on dual phase behavior of commercial low-alloyed steels [J]. J. Iron Steel Res. Int., 2010, 17: 73
55 Asadi M, De Cooman B C, Palkowski H. Influence of martensite volume fraction and cooling rate on the properties of thermomechanically processed dual phase steel [J]. Mater. Sci. Eng., 2012, A538: 42
56 Calcagnotto M, Adachi Y, Ponge D, et al. Deformation and fracture mechanisms in fine-and ultrafine-grained ferrite/martensite dual-phase steels and the effect of aging [J]. Acta Mater., 2011, 59: 658
57 Samuel F H. Effect of dual-phase treatment and tempering on the microstructure and mechanical properties of a high strength, low alloy steel [J]. Mater. Sci. Eng., 1985, 75: 51
58 Zhao Z Z, Xu G, Jin G C, et al. Development of high strength cold rolling C-Mn-Si dual phase steels [J]. Heat Treat. Metals, 2009, 34(1): 14
赵征志, 徐 刚, 金光灿 等. 高强度C-Mn-Si系冷轧双相钢的研究与开发 [J]. 金属热处理, 2009, 34(1): 14
59 Banerjee D, Iadicola M, Creuziger A, et al. Finite element modeling of deformation behavior of steel specimens under various loading scenarios [J]. Key Eng. Mater., 2015, 651-653: 969
60 Li H, Gao S, Tian Y, et al. Influence of tempering on mechanical properties of ferrite and martensite dual phase steel [J]. Mater. Today Proceed., 2015, 2(): S667
61 Mazinani M, Poole W J. Effect of martensite plasticity on the deformation behavior of a low-carbon dual-phase steel [J]. Metall. Mater. Trans., 2007, 38A: 328
62 Huang T T, Gou R B, Dan W J, et al. Strain-hardening behaviors of dual phase steels with microstructure features [J]. Mater. Sci. Eng., 2016, A672: 88
63 Ramazani A, Pinard P T, Richter S, et al. Characterisation of microstructure and modelling of flow behaviour of bainite-aided dual-phase steel [J]. Computat. Mater. Sci., 2013, 80: 134
64 Morsdorf L, Jeannin O, Barbier D, et al. Multiple mechanisms of lath martensite plasticity [J]. Acta Mater., 2016, 121: 202
65 Hosseini-Toudeshky H, Anbarlooie B, Kadkhodapour J. Micromechanics stress-strain behavior prediction of dual phase steel considering plasticity and grain boundaries debonding [J]. Mater. Des., 2015, 68: 167
66 Park K, Nishiyama M, Nakada N, et al. Effect of the martensite distribution on the strain hardening and ductile fracture behaviors in dual-phase steel [J]. Mater. Sci. Eng., 2014, A604: 135
67 Dong D Y, Liu Y, Wang L, et al. Effect of strain rate on dynamic deformation behavior of DP780 steel [J]. Acta Metall. Sin., 2013, 49: 159
董丹阳, 刘 杨, 王 磊 等. 应变速率对DP780钢动态拉伸变形行为的影响 [J]. 金属学报, 2013, 49: 159
68 Avramovic-Cingara G, Ososkov Y, Jain M K, et al. Effect of martensite distribution on damage behaviour in DP600 dual phase steels [J]. Mater. Sci. Eng., 2009, A516: 7
69 Kocatepe K, Cerah M, Erdogan M. Effect of martensite volume fraction and its morphology on the tensile properties of ferritic ductile iron with dual matrix structures [J]. J. Mater. Process. Technol., 2006, 178: 44
70 Lai Q Q, Brassart L, Bouaziz O, et al. Influence of martensite volume fraction and hardness on the plastic behavior of dual-phase steels: Experiments and micromechanical modeling [J]. Int. J. Plast., 2016, 80: 187
71 Han Q H, Kang Y L, Hodgson P D, et al. Quantitative measurement of strain partitioning and slip systems in a dual-phase steel [J]. Scr. Mater., 2013, 69: 13
72 Deng J, Ma J W, Xu Y Y, et al. Effect of martensite distribution on microscopic deformation behavior and mechanical properties of dual phase steels [J]. Acta Metall. Sin., 2015, 51: 1092
邓 洁, 马佳伟, 许以阳 等. 马氏体的分布对双相钢微观变形行为和力学性能的影响 [J]. 金属学报, 2015, 51: 1092
73 Ghassemi-Armaki H, Maaß R, Bhat S P, et al. Deformation response of ferrite and martensite in a dual-phase steel [J]. Acta Mater., 2014, 62: 197
74 Badkoobeh F, Mostaan H, Rafiei M, et al. Microstructural characteristics and strengthening mechanisms of ferritic-martensitic dual-phase steels: A review [J]. Metals, 2022, 12: 101
75 Gao B, Hu R, Pan Z Y, et al. Strengthening and ductilization of laminate dual-phase steels with high martensite content [J]. J. Mater. Sci. Technol., 2021, 65: 29
76 Bouquerel J, Verbeken K, De Cooman B. Microstructure-based model for the static mechanical behaviour of multiphase steels [J]. Acta Mater., 2006, 54: 1443
77 Mecking H, Kocks U F. Kinetics of flow and strain-hardening [J]. Acta Metall., 1981, 29: 1865
78 Bag A, Ray K K, Dwarakadasa E S. Influence of martensite content and morphology on tensile and impact properties of high-martensite dual-phase steels [J]. Metall. Mater. Trans., 1999, 30A: 1193
79 Paul S K, Kumar A. Micromechanics based modeling to predict flow behavior and plastic strain localization of dual phase steels [J]. Computat. Mater. Sci., 2012, 63: 66
80 Tasan C C, Hoefnagels J P M, Diehl M, et al. Strain localization and damage in dual phase steels investigated by coupled in-situ deformation experiments and crystal plasticity simulations [J]. Int. J. Plast., 2014, 63: 198
81 Paul S K. Real microstructure based micromechanical model to simulate microstructural level deformation behavior and failure initiation in DP 590 steel [J]. Mater. Des., 2013, 44: 397
82 Sun C T, Vaidya R S. Prediction of composite properties from a representative volume element [J]. Compos. Sci. Technol., 1996, 56: 171
83 Mao B, Liao Y L. Modeling of lüders elongation and work hardening behaviors of ferrite-pearlite dual phase steels under tension [J]. Mech. Mater., 2019, 129: 222
84 Ghadbeigi H, Pinna C, Celotto S. Failure mechanisms in DP600 steel: Initiation, evolution and fracture [J]. Mater. Sci. Eng., 2013, A588: 420
85 Steinbrunner D L, Matlock D K, Krauss G. Void formation during tensile testing of dual phase steels [J]. Metall. Trans., 1988, 19A: 579
86 Das A, Tarafder S, Sivaprasad S, et al. Influence of microstructure and strain rate on the strain partitioning behaviour of dual phase steels [J]. Mater. Sci. Eng., 2019, A754: 348
87 Toda H, Takijiri A, Azuma M, et al. Damage micromechanisms in dual-phase steel investigated with combined phase-and absorption-contrast tomography [J]. Acta Mater., 2017, 126: 401
88 Gerbig D, Srivastava A, Osovski S, et al. Analysis and design of dual-phase steel microstructure for enhanced ductile fracture resistance [J]. Int. J. Fract., 2018, 209: 3
89 Aghaei M, Ziaei-Rad S. A micro mechanical study on DP600 steel under tensile loading using Lemaitre damage model coupled with combined hardening [J]. Mater. Sci. Eng., 2020, A772: 138774
90 Darabi A C, Kadkhodapour J, Anaraki A P, et al. Micromechanical modeling of damage mechanisms in dual-phase steel under different stress states [J]. Eng. Fract. Mech., 2021, 243: 107520
91 Briffod F, Shiraiwa T, Enoki M. Micromechanical investigation of the effect of the crystal orientation on the local deformation path and ductile void nucleation in dual-phase steels [J]. Mater. Sci. Eng., 2021, A826: 141933
92 Tang A, Liu H T, Chen R, et al. Mesoscopic origin of damage nucleation in dual-phase steels [J]. Int. J. Plast., 2021, 137: 102920
93 Nawaz B, Long X Y, Li Y G, et al. Effect of ferrite/martensite on microstructure evolution and mechanical properties of ultrafine vanadium dual-phase steel [J]. J. Mater. Eng. Perform., 2022, doi: 10.1007/s11665-021-06550-1
94 Lu K. Making strong nanomaterials ductile with gradients [J]. Science, 2014, 345: 1455
95 Yin F, Cheng G J, Xu R, et al. Ultrastrong nanocrystalline stainless steel and its Hall-Petch relationship in the nanoscale [J]. Scr. Mater., 2018, 155: 26
96 Samantaray D, Chaudhuri A, Borah U, et al. Role of grain boundary ferrite layer in dynamic recrystallization of semi-solid processed type 304L austenitic stainless steel [J]. Mater. Lett., 2016, 179: 65
97 Azizi H, Samei J, Zurob H S, et al. A novel approach to producing architectured ultra-high strength dual phase steels [J]. Mater. Sci. Eng., 2019, A833: 142582
98 Wang Y J, Sun J J, Jiang T, et al. A low-alloy high-carbon martensite steel with 2.6 GPa tensile strength and good ductility [J]. Acta Mater., 2018, 158: 247
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[5] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[6] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[9] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[10] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[11] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[12] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[13] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[14] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[15] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
No Suggested Reading articles found!