|
|
Microstructure Control and Strengthening Mechanism of High Strength Cold Rolled Dual Phase Steels for Automobile Applications |
CHU Shuangjie1,2( ), MAO Bo1( ), HU Guangkui2 |
1.School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China 2.Baoshan Iron & Steel Co. , Ltd. , Shanghai 201900, China |
|
Cite this article:
CHU Shuangjie, MAO Bo, HU Guangkui. Microstructure Control and Strengthening Mechanism of High Strength Cold Rolled Dual Phase Steels for Automobile Applications. Acta Metall Sin, 2022, 58(4): 551-566.
|
Abstract Steels have been critical in the rapid development of the global automobile industry. Among all automotive steels, dual phase (DP) steels have been extensively used as the mechanical components and outer plates in automobiles, owing to their excellent mechanical properties, desirable weldability and paintability, and low manufacturing cost. DP steels are beneficial in reducing the weight and increasing the safety of automobiles. The optimization of alloy elements and microstructure are essential for the engineering performance of DP steels. Understanding the relationship between their mechanical properties and microstructural features as well as the factors affecting the microstructure is of utmost importance. This study reviews the recent advances in the research on the microstructure evolution and mechanical properties of high strength cold-rolled DP steels for automobile applications. First, the alloy design principles and microstructure tailoring mechanism are summarized. Then, the microstructure evolution during thermal-mechanical processing, which includes rolling, intercritical annealing, subsequent cooling, and over-aging process is discussed. Thereafter, the mechanical properties and failure mechanism of DP steels as well as their relationship with the microstructural features are analyzed. Furthermore, the related challenges and future research directions are discussed and proposed, respectively.
|
Received: 17 February 2022
|
|
Fund: National Natural Science Foundation of China(52101046) |
About author: MAO Bo, Tel: (021)34202952, E-mail: bmao@sjtu.edu.cn CHU Shuangjie, professor, Tel: (021)26648302, E-mail: sjchu@baosteel.com
|
1 |
Kuziak R, Kawalla R, Waengler S. Advanced high strength steels for automotive industry [J]. Arch. Civil Mech. Eng., 2008, 8: 103
|
2 |
Peng X R. Analysis of steel market in China automobile industry [J]. Metall. Econ. Manage., 2021, (6): 26
|
|
彭孝仁. 我国汽车行业用钢市场分析 [J]. 冶金经济与管理, 2021, (6): 26
|
3 |
Wagoner R H, Smith G. Advanced high strength steel workshop [R]. Arlington, Virginia, USA, 2006, 1: 122
|
4 |
Funakawa Y, Nagataki Y. High strength steel sheets for weight reduction of automobiles [J]. JFE Tech. Rep., 2019, 24: 1
|
5 |
Hayami S, Furukawa T. Micro alloying 75 [A]. Proceeding of a Symposium on High Strength, Low-Alloy Steels, Products and Process [C]. New York: Union Carbide Corp., 1975: 78
|
6 |
Rana R, Singh S B. Automotive Steels: Design, Metallurgy, Processing and Applications [M]. Cambridge: Woodhead Publishing, 2016: 1
|
7 |
Zhao Z Z, Tong T T, Zhao A M, et al. Microstructure, mechanical properties and work hardening behavior of 1300 MPa grade 0.14C-2.72Mn-1.3Si steel [J]. Acta Metall Sin., 2014, 50: 1153
|
|
赵征志, 佟婷婷, 赵爱民 等. 1300 MPa级0.14C-2.72Mn-1.3Si钢的显微组织和力学性能及加工硬化行为 [J]. 金属学报, 2014, 50: 1153
|
8 |
Olsson K, Gladh M, Hedin J E, et al. Microalloyed high-strength steels [J]. Adv. Mater. Processes, 2006, 164: 44
|
9 |
Rashid M S. Dual phase steels [J]. Annu. Rev. Mater. Sci., 1981, 11: 245
|
10 |
Davies R G. Early stages of yielding and strain aging of a vanadium-containing dual-phase steel [J]. Metall. Trans., 1979, 10A: 1549
|
11 |
Tasan C C, Diehl M, Yan D, et al. An overview of dual-phase steels: Advances in microstructure-oriented processing and micromechanically guided design [J]. Annu. Rev. Mater. Res., 2015, 45: 391
|
12 |
Sarwar M, Ahmad E, Qureshi K A, et al. Influence of epitaxial ferrite on tensile properties of dual phase steel [J]. Mater. Des., 2007, 28: 335
|
13 |
Kalhor A, Taheri A K, Mirzadeh H, et al. Processing, microstructure adjustments, and mechanical properties of dual phase steels: A review [J]. Mater. Sci. Technol., 2021, 37: 561
|
14 |
Zhao N, Liu X W, Sun M J, et al. Microstructure and fatigue properties of low temperature coiling hot-rolled dual phase steel [J]. Heat Treat. Met., 2021, 46(5): 55
|
|
赵 楠, 刘学伟, 孙明军 等. 低温卷取热轧双相钢的显微组织及疲劳性能 [J]. 金属热处理, 2021, 46(5): 55
|
15 |
Walunj M G, Mandal G K, Ranjan R K, et al. Role of dew points and Fe pre-coats on the galvanizing and galvannealing of dual phase steel [J]. Surf. Coat. Technol., 2021, 422: 127573
|
16 |
Soto R, Saikaly W, Bano X, et al. Statistical and theoretical analysis of precipitates in dual-phase steels microalloyed with titanium and their effect on mechanical properties [J]. Acta Mater., 1999, 47: 3475
|
17 |
Xia M, Biro E, Tian Z, et al. Effects of heat input and martensite on HAZ softening in laser welding of dual phase steels [J]. ISIJ Int., 2008, 48: 809
|
18 |
De La Concepción V L, Lorusso H N, Svoboda H G. Effect of carbon content on microstructure and mechanical properties of dual phase steels [J]. Proced. Mater. Sci., 2015, 8: 1047
|
19 |
Mukherjee K, Hazra S S, Militzer M. Grain refinement in dual-phase steels [J]. Metall. Mater. Trans., 2009, 40A: 2145
|
20 |
Calcagnotto M, Ponge D, Raabe D. On the effect of manganese on grain size stability and hardenability in ultrafine-grained ferrite/martensite dual-phase steels [J]. Metall. Mater. Trans., 2012, 43A: 37
|
21 |
Ye J Y, Zhao Z Z, Zhang Y H, et al. Effects of Si and Cr on microstructure and mechanical properties of ultra high strength dual-phase steel [J]. Iron Steel, 2015, 50(3): 78
|
|
叶洁云, 赵征志, 张迎晖 等. 硅和铬对超高强双相钢组织和性能的影响 [J]. 钢铁, 2015, 50(3): 78
|
22 |
Nouri A, Saghafian H, Kheirandish S. Effects of silicon content and intercritical annealing on manganese partitioning in dual phase steels [J]. J. Iron Steel Res. Int., 2010, 17: 44
|
23 |
Terao N, Cauwe B. Influence of additional elements (Mo, Nb, Ta and B) on the mechanical properties of high-manganese dual-phase steels [J]. J. Mater. Sci., 1988, 23: 1769
|
24 |
Han Q H, Kang Y L, Zhao X M, et al. Microstructure and properties of C-Si-Mn-Cr (Mo) cold rolled DP980 steels [A]. Annual Cold Rolling Plates Technology Conference [C]. Baotou: China Metal Society, 2009: 244
|
|
韩启航, 康永林, 赵显蒙 等. C-Si-Mn-Cr(Mo)系 980MPa级冷轧双相钢的组织性能研究 [A]. 2009年全国冷轧板带生产技术交流会论文集 [C]. 包头: 中国金属学会, 2009: 244
|
25 |
Zhao Z Z, Niu F, Tang D, et al. Microstructure and properties of ultra-high strength cold-rolled dual phase steel [J]. J. Univ. Sci. Technol. Beijing, 2010, 32: 1287
|
|
赵征志, 牛 枫, 唐 荻 等. 超高强度冷轧双相钢组织与性能 [J]. 北京科技大学学报, 2010, 32: 1287
|
26 |
Zhang X H, Zhu G H, Mao W M. Alloying design and composition control of 800MPa grade cold rolled dual phase steel [J]. Steelmaking, 2010, 26(5): 16
|
|
张学辉, 朱国辉, 毛卫民. 800MPa级双相钢的合金化设计及成分控制 [J]. 炼钢, 2010, 26(5): 16
|
27 |
Kamikawa N, Hirohashi M, Sato Y, et al. Tensile behavior of ferrite-martensite dual phase steels with nano-precipitation of vanadium carbides [J]. ISIJ Int., 2015, 55: 1781
|
28 |
Kang J Y, Lee H C, Han S H. Effect of Al and Mo on the textures and microstructures of dual phase steels [J]. Mater. Sci. Eng., 2011, A530: 183
|
29 |
Bezobrazov Y A, Kolbasnikov N G, Naumov A A. High strength dual-phase steel structure evolution during hot rolling [A]. Materials Science and Technology [C]. Pittsburgh, Pennsylvania: The Association for Iron & Steel Technology, 2012
|
30 |
Nikkhah S, Mirzadeh H, Zamani M. Fine tuning the mechanical properties of dual phase steel via thermomechanical processing of cold rolling and intercritical annealing [J]. Mater. Chem. Phys., 2019, 230: 1
|
31 |
Dai J G, Meng Q G, Zheng H X. High-strength dual-phase steel produced through fast-heating annealing method [J]. Results Mater., 2020, 5: 100069
|
32 |
Zamani M, Mirzadeh H, Maleki M. Enhancement of mechanical properties of low carbon dual phase steel via natural aging [J]. Mater. Sci. Eng., 2018, A734: 178
|
33 |
Xiong Z P, Kostryzhev A G, Stanford N E, et al. Microstructures and mechanical properties of dual phase steel produced by laboratory simulated strip casting [J]. Mater. Des., 2015, 88: 537
|
34 |
Waterschoot T, Kestens L, De Cooman B C. Hot rolling texture development in CMnCrSi dual-phase steels [J]. Metall. Mater. Trans., 2002, 33A: 1091
|
35 |
Mao B, Chu S J, Zhang L Y, et al. Effect of intercritical annealing temperature on microstructure, mechanical properties and fracture behavior of high strength cold rolled DP980 [J]. Hot Working Technol., 2014, 43(20): 157
|
|
毛 博, 储双杰, 张理扬 等. 两相区退火温度对高强冷轧DP980显微组织力学性能和断裂行为的影响 [J]. 热加工工艺, 2014, 43(20): 157
|
36 |
Mondal D K, Ray R K. Development of {111} texture during cold rolling and recrystallization of a C-Mn-V dual-phase steel [J]. Mater. Sci. Eng., 1992, A158: 147
|
37 |
Dillien S, Seefeldt M, Allain S, et al. EBSD study of the substructure development with cold deformation of dual phase steel [J]. Mater. Sci. Eng., 2010, A527: 947
|
38 |
Salehi A R, Serajzadeh S, Taheri A K. A study on the microstructural changes in hot rolling of dual-phase steels [J]. J. Mater. Sci., 2006, 41: 1917
|
39 |
Han S H, Choi S H, Choi J K, et al. Effect of hot-rolling processing on texture and r-value of annealed dual-phase steels [J]. Mater. Sci. Eng., 2010, A527: 1686
|
40 |
Zheng C W, Raabe D. Interaction between recrystallization and phase transformation during intercritical annealing in a cold-rolled dual-phase steel: A cellular automaton model [J]. Acta Mater., 2013, 61: 5504
|
41 |
Speich G R, Demarest V A, Miller R L. Formation of austenite during intercritical annealing of dual-phase steels [J]. Metall. Mater. Trans., 1981, 12A: 1419
|
42 |
Chowdhury S G, Pereloma E V, Santos D. Evolution of texture at the initial stages of continuous annealing of cold rolled dual-phase steel: Effect of heating rate [J]. Mater. Sci. Eng., 2008, A480: 540
|
43 |
Toji Y, Yamashita T, Nakajima K, et al. Effect of Mn partitioning during intercritical annealing on following γ→α transformation and resultant mechanical properties of cold-rolled dual phase steels [J]. ISIJ Int., 2011, 51: 818
|
44 |
Jamei F, Mirzadeh H, Zamani M. Synergistic effects of holding time at intercritical annealing temperature and initial microstructure on the mechanical properties of dual phase steel [J]. Mater. Sci. Eng., 2019, A750: 125
|
45 |
Sun S J, Pugh M. Manganese partitioning in dual-phase steel during annealing [J]. Mater. Sci. Eng., 2000, A276: 167
|
46 |
Nouroozi M, Mirzadeh H, Zamani M. Effect of microstructural refinement and intercritical annealing time on mechanical properties of high-formability dual phase steel [J]. Mater. Sci. Eng., 2018, A736: 22
|
47 |
Calcagnotto M, Ponge D, Raabe D. Microstructure control during fabrication of ultrafine grained dual-phase steel: Characterization and effect of intercritical annealing parameters [J]. ISIJ Int., 2012, 52: 874
|
48 |
Bellavoine M, Dumont M, Dehmas M, et al. Ferrite recrystallization and austenite formation during annealing of cold-rolled advanced high-strength steels: In situ synchrotron X-ray diffraction and modeling [J]. Mater. Charact., 2019, 154: 20
|
49 |
Peranio N, Roters F, Raabe D. Microstructure evolution during recrystallization in dual-phase steels [J]. Mater. Sci. Forum, 2012, 715-716: 13
|
50 |
Chbihi A, Barbier D, Germain L, et al. Interactions between ferrite recrystallization and austenite formation in high-strength steels [J]. J. Mater. Sci., 2014, 49: 3608
|
51 |
Bos C, Mecozzi M G, Sietsma J. A microstructure model for recrystallisation and phase transformation during the dual-phase steel annealing cycle [J]. Computat. Mater. Sci., 2010, 48: 692
|
52 |
Ollat M, Militzer M, Massardier V, et al. Mixed-mode model for ferrite-to-austenite phase transformation in dual-phase steel [J]. Computat. Mater. Sci., 2018, 149: 282
|
53 |
Ashrafi H, Shamanian M, Emadi R, et al. A novel and simple technique for development of dual phase steels with excellent ductility [J]. Mater. Sci. Eng., 2017, A680: 197
|
54 |
Hüseyin A, Havva K Z, Ceylan K. Effect of intercritical annealing parameters on dual phase behavior of commercial low-alloyed steels [J]. J. Iron Steel Res. Int., 2010, 17: 73
|
55 |
Asadi M, De Cooman B C, Palkowski H. Influence of martensite volume fraction and cooling rate on the properties of thermomechanically processed dual phase steel [J]. Mater. Sci. Eng., 2012, A538: 42
|
56 |
Calcagnotto M, Adachi Y, Ponge D, et al. Deformation and fracture mechanisms in fine-and ultrafine-grained ferrite/martensite dual-phase steels and the effect of aging [J]. Acta Mater., 2011, 59: 658
|
57 |
Samuel F H. Effect of dual-phase treatment and tempering on the microstructure and mechanical properties of a high strength, low alloy steel [J]. Mater. Sci. Eng., 1985, 75: 51
|
58 |
Zhao Z Z, Xu G, Jin G C, et al. Development of high strength cold rolling C-Mn-Si dual phase steels [J]. Heat Treat. Metals, 2009, 34(1): 14
|
|
赵征志, 徐 刚, 金光灿 等. 高强度C-Mn-Si系冷轧双相钢的研究与开发 [J]. 金属热处理, 2009, 34(1): 14
|
59 |
Banerjee D, Iadicola M, Creuziger A, et al. Finite element modeling of deformation behavior of steel specimens under various loading scenarios [J]. Key Eng. Mater., 2015, 651-653: 969
|
60 |
Li H, Gao S, Tian Y, et al. Influence of tempering on mechanical properties of ferrite and martensite dual phase steel [J]. Mater. Today Proceed., 2015, 2(): S667
|
61 |
Mazinani M, Poole W J. Effect of martensite plasticity on the deformation behavior of a low-carbon dual-phase steel [J]. Metall. Mater. Trans., 2007, 38A: 328
|
62 |
Huang T T, Gou R B, Dan W J, et al. Strain-hardening behaviors of dual phase steels with microstructure features [J]. Mater. Sci. Eng., 2016, A672: 88
|
63 |
Ramazani A, Pinard P T, Richter S, et al. Characterisation of microstructure and modelling of flow behaviour of bainite-aided dual-phase steel [J]. Computat. Mater. Sci., 2013, 80: 134
|
64 |
Morsdorf L, Jeannin O, Barbier D, et al. Multiple mechanisms of lath martensite plasticity [J]. Acta Mater., 2016, 121: 202
|
65 |
Hosseini-Toudeshky H, Anbarlooie B, Kadkhodapour J. Micromechanics stress-strain behavior prediction of dual phase steel considering plasticity and grain boundaries debonding [J]. Mater. Des., 2015, 68: 167
|
66 |
Park K, Nishiyama M, Nakada N, et al. Effect of the martensite distribution on the strain hardening and ductile fracture behaviors in dual-phase steel [J]. Mater. Sci. Eng., 2014, A604: 135
|
67 |
Dong D Y, Liu Y, Wang L, et al. Effect of strain rate on dynamic deformation behavior of DP780 steel [J]. Acta Metall. Sin., 2013, 49: 159
|
|
董丹阳, 刘 杨, 王 磊 等. 应变速率对DP780钢动态拉伸变形行为的影响 [J]. 金属学报, 2013, 49: 159
|
68 |
Avramovic-Cingara G, Ososkov Y, Jain M K, et al. Effect of martensite distribution on damage behaviour in DP600 dual phase steels [J]. Mater. Sci. Eng., 2009, A516: 7
|
69 |
Kocatepe K, Cerah M, Erdogan M. Effect of martensite volume fraction and its morphology on the tensile properties of ferritic ductile iron with dual matrix structures [J]. J. Mater. Process. Technol., 2006, 178: 44
|
70 |
Lai Q Q, Brassart L, Bouaziz O, et al. Influence of martensite volume fraction and hardness on the plastic behavior of dual-phase steels: Experiments and micromechanical modeling [J]. Int. J. Plast., 2016, 80: 187
|
71 |
Han Q H, Kang Y L, Hodgson P D, et al. Quantitative measurement of strain partitioning and slip systems in a dual-phase steel [J]. Scr. Mater., 2013, 69: 13
|
72 |
Deng J, Ma J W, Xu Y Y, et al. Effect of martensite distribution on microscopic deformation behavior and mechanical properties of dual phase steels [J]. Acta Metall. Sin., 2015, 51: 1092
|
|
邓 洁, 马佳伟, 许以阳 等. 马氏体的分布对双相钢微观变形行为和力学性能的影响 [J]. 金属学报, 2015, 51: 1092
|
73 |
Ghassemi-Armaki H, Maaß R, Bhat S P, et al. Deformation response of ferrite and martensite in a dual-phase steel [J]. Acta Mater., 2014, 62: 197
|
74 |
Badkoobeh F, Mostaan H, Rafiei M, et al. Microstructural characteristics and strengthening mechanisms of ferritic-martensitic dual-phase steels: A review [J]. Metals, 2022, 12: 101
|
75 |
Gao B, Hu R, Pan Z Y, et al. Strengthening and ductilization of laminate dual-phase steels with high martensite content [J]. J. Mater. Sci. Technol., 2021, 65: 29
|
76 |
Bouquerel J, Verbeken K, De Cooman B. Microstructure-based model for the static mechanical behaviour of multiphase steels [J]. Acta Mater., 2006, 54: 1443
|
77 |
Mecking H, Kocks U F. Kinetics of flow and strain-hardening [J]. Acta Metall., 1981, 29: 1865
|
78 |
Bag A, Ray K K, Dwarakadasa E S. Influence of martensite content and morphology on tensile and impact properties of high-martensite dual-phase steels [J]. Metall. Mater. Trans., 1999, 30A: 1193
|
79 |
Paul S K, Kumar A. Micromechanics based modeling to predict flow behavior and plastic strain localization of dual phase steels [J]. Computat. Mater. Sci., 2012, 63: 66
|
80 |
Tasan C C, Hoefnagels J P M, Diehl M, et al. Strain localization and damage in dual phase steels investigated by coupled in-situ deformation experiments and crystal plasticity simulations [J]. Int. J. Plast., 2014, 63: 198
|
81 |
Paul S K. Real microstructure based micromechanical model to simulate microstructural level deformation behavior and failure initiation in DP 590 steel [J]. Mater. Des., 2013, 44: 397
|
82 |
Sun C T, Vaidya R S. Prediction of composite properties from a representative volume element [J]. Compos. Sci. Technol., 1996, 56: 171
|
83 |
Mao B, Liao Y L. Modeling of lüders elongation and work hardening behaviors of ferrite-pearlite dual phase steels under tension [J]. Mech. Mater., 2019, 129: 222
|
84 |
Ghadbeigi H, Pinna C, Celotto S. Failure mechanisms in DP600 steel: Initiation, evolution and fracture [J]. Mater. Sci. Eng., 2013, A588: 420
|
85 |
Steinbrunner D L, Matlock D K, Krauss G. Void formation during tensile testing of dual phase steels [J]. Metall. Trans., 1988, 19A: 579
|
86 |
Das A, Tarafder S, Sivaprasad S, et al. Influence of microstructure and strain rate on the strain partitioning behaviour of dual phase steels [J]. Mater. Sci. Eng., 2019, A754: 348
|
87 |
Toda H, Takijiri A, Azuma M, et al. Damage micromechanisms in dual-phase steel investigated with combined phase-and absorption-contrast tomography [J]. Acta Mater., 2017, 126: 401
|
88 |
Gerbig D, Srivastava A, Osovski S, et al. Analysis and design of dual-phase steel microstructure for enhanced ductile fracture resistance [J]. Int. J. Fract., 2018, 209: 3
|
89 |
Aghaei M, Ziaei-Rad S. A micro mechanical study on DP600 steel under tensile loading using Lemaitre damage model coupled with combined hardening [J]. Mater. Sci. Eng., 2020, A772: 138774
|
90 |
Darabi A C, Kadkhodapour J, Anaraki A P, et al. Micromechanical modeling of damage mechanisms in dual-phase steel under different stress states [J]. Eng. Fract. Mech., 2021, 243: 107520
|
91 |
Briffod F, Shiraiwa T, Enoki M. Micromechanical investigation of the effect of the crystal orientation on the local deformation path and ductile void nucleation in dual-phase steels [J]. Mater. Sci. Eng., 2021, A826: 141933
|
92 |
Tang A, Liu H T, Chen R, et al. Mesoscopic origin of damage nucleation in dual-phase steels [J]. Int. J. Plast., 2021, 137: 102920
|
93 |
Nawaz B, Long X Y, Li Y G, et al. Effect of ferrite/martensite on microstructure evolution and mechanical properties of ultrafine vanadium dual-phase steel [J]. J. Mater. Eng. Perform., 2022, doi: 10.1007/s11665-021-06550-1
|
94 |
Lu K. Making strong nanomaterials ductile with gradients [J]. Science, 2014, 345: 1455
|
95 |
Yin F, Cheng G J, Xu R, et al. Ultrastrong nanocrystalline stainless steel and its Hall-Petch relationship in the nanoscale [J]. Scr. Mater., 2018, 155: 26
|
96 |
Samantaray D, Chaudhuri A, Borah U, et al. Role of grain boundary ferrite layer in dynamic recrystallization of semi-solid processed type 304L austenitic stainless steel [J]. Mater. Lett., 2016, 179: 65
|
97 |
Azizi H, Samei J, Zurob H S, et al. A novel approach to producing architectured ultra-high strength dual phase steels [J]. Mater. Sci. Eng., 2019, A833: 142582
|
98 |
Wang Y J, Sun J J, Jiang T, et al. A low-alloy high-carbon martensite steel with 2.6 GPa tensile strength and good ductility [J]. Acta Mater., 2018, 158: 247
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|