Please wait a minute...
Acta Metall Sin  2022, Vol. 58 Issue (10): 1261-1270    DOI: 10.11900/0412.1961.2021.00086
Research paper Current Issue | Archive | Adv Search |
Influences of Composition on the Transformation-Controlled {100} Textures in High Silicon Electrical Steels Prepared by Mn-Removal Vacuum Annealing
YANG Ping1(), WANG Jinhua1, MA Dandan1, PANG Shufang2, CUI Feng'e3
1.School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
2.Iron and Steel Research Institute, Angang Group, Anshan 114000, China
3.Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
Cite this article: 

YANG Ping, WANG Jinhua, MA Dandan, PANG Shufang, CUI Feng'e. Influences of Composition on the Transformation-Controlled {100} Textures in High Silicon Electrical Steels Prepared by Mn-Removal Vacuum Annealing. Acta Metall Sin, 2022, 58(10): 1261-1270.

Download:  HTML  PDF(3502KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Laboratory experiments demonstrate that the magnetic-beneficial {100} texture can be strongly produced using the so-called surface effect transformation treatment either in low-grade electrical steels or in high-grade 3%Si steels. In the latter case, the solid-phase transformation is introduced into Si steels by adding carbon and manganese elements. In addition, vacuum annealing and subsequent wet hydrogen decarburization are needed. Although such treatment differs remarkably from conventional industry production facilities, its superiority of producing extremely sharp {100} texture, immensely high magnetic induction, and low core loss keeps the method attractive for environmental friendly and high-efficiency rotating machines. Our previous results indicated that the heavy rolling reduction favors the rotated cube texture {100}<011> formation; however, the cube texture {100}<001> is expected due to the easiness of sheet cutting for iron core production in the industry. In this study, the influences of compositions on the formation of the cube texture, 25°-rotated cube texture, and rotated cube texture were investigated. The phase diagram features of the alloy consisting of strong cube texture were also examined. The aim is to establish the theoretical bases for quantitative control of the alloy composition suitable for cube texture in 3%Si electrical steels. Four steel compositions are designed using different combinations of carbon and manganese contents. Thus, the transformation temperatures, ferrite grain sizes, and pearlite volume fractions will be different, leading to distinct growth rates of {100} oriented grains during vacuum annealing at a constant temperature. They were cold-rolled by 50% reduction, which is beneficial for the cube texture formation. The results of experimental determination and calculated phase diagrams indicate that the alloy with lower carbon and Mn contents in the investigated four steel compositions shows a faster and stronger cube texture in the Mn-removal surface layer. The area fraction of the {100} texture in the Mn-removal layer of the alloy after vacuum annealing at 1100oC for 30 min reaches 77.3%. In addition, the suitable decarburization temperature after the formation of the Mn-removal surface layer is discussed and suggested based on the calculated phase diagrams.

Key words:  electrical steel      texture      manganese removal      vacuum annealing      transformation      surface effect     
Received:  26 February 2021     
ZTFLH:  TG111.5  
Fund: National Natural Science Foundation of China(51771024);National Natural Science Foundation of China(51931002)
About author:  YANG Ping, professor, Tel: (010)82376968, E-mail: yangp@mater.ustb.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00086     OR     https://www.ams.org.cn/EN/Y2022/V58/I10/1261

AlloyMass fraction of C / %Mass fraction of Mn / %Mass fraction of Si / %

TF

oC

R

%

A3

oC

A1s

oC

A1f

oC

F

%

1#0.0561.732.8790085.29977417299
2#0.0941.043.0096087.0105077676614
3#0.0901.682.86100088.597474973115
4#0.0581.072.9898090.910947707648
Table 1  Compositions, hot rolling parameters, equilibrium transformation temperatures, and equilibrium volume fractions of pearlite in four electrical steels
Fig.1  OM images of alloy 1 (a), alloy 2 (b), alloy 3 (c), and alloy 4 (d) after hot rolling (RD—rolling direction, ND—normal direction. White grains are ferrites, black regions are pearlites)
Fig.2  Constant φ2 = 45° sections of orientation distribution function (ODF) of alloy 1 (a), alloy 2 (b), alloy 3 (c), and alloy 4 (d) after cold rolling with 50% reduction (φ1, Φ, φ2—Euler angles)
Fig.3  OM images of alloy 1 (a), alloy 2 (b), alloy 3 (c), and alloy 4 (d) after cold rolling and quickly heating to 1100oC in vacuum for 30 min (White arrows in Fig.3c show Widmanstätten structures, and black arrows show equiaxed ferrites)
Fig.4  EBSD orientation maps and corresponding {100} pole figures of the surface region of alloy 1, {100}<011> texture (a), alloy 2, {100} texture (b), alloy 3, {100}<021> texture (c), and alloy 4, {100}<001> texture (d) after vacuum annealing at 1100oC for 30 min (TD—transverse direction)
AlloyArea fraction of {100} grains (≤ 15°) / %Average grain sizeAverage size of {100} grain / μmAverage size of {111} grain / μm
μm
1#60.99012185
2#55.0577552
3#81.39313565
4#77.312015561
Table 2  Surface grains information of 4 alloys after Mn-removal annealing in vacuum
Fig.5  Relationships of volume fractions of different phases and temperatures of alloy 1 (a), alloy 2 (b), alloy 3 (c), and alloy 4 (d)
Fig.6  Calculated phase diagrams (relation of temperature and manganese content) of alloy 1 (a), alloy 2 (b), alloy 3 (c), and alloy 4 (d)
Fig.7  Calculated phase diagrams showing the relation of temperature and carbon content of alloy 1 (a), alloy 2 (b), alloy 3 (c), and alloy 4 (d)
1 Sung J K, Lee D N, Wang D H, et al. Efficient generation of cube-on-face crystallographic texture in iron and its alloys [J]. ISIJ Int., 2011, 51: 284
doi: 10.2355/isijinternational.51.284
2 Sung J K, Koo Y M. Magnetic properties of Fe and Fe-Si alloys with {100}<0vw> texture [J]. J. Appl. Phys., 2013, 113: 17A338
3 Sung J K, Park S M, Shim B Y, et al. Effect of Mn on <100> texture evolution in Fe-Si-Mn alloys [J]. Mater. Sci. Forum, 2012, 702-703: 730
doi: 10.4028/www.scientific.net/MSF.702-703.730
4 Xie L, Yang P, Zhang N, et al. Formation of {100} textured columnar grain structure in a non-oriented electrical steel by phase transformation [J]. J. Magn. Magn. Mater., 2014, 356: 1
doi: 10.1016/j.jmmm.2013.12.045
5 Xie L, Yang P, Xia D S, et al. Microstructure and texture evolution in a non-oriented electrical steel during γα transformation under various atmosphere conditions [J]. J. Magn. Magn. Mater., 2015, 374: 655
doi: 10.1016/j.jmmm.2014.09.033
6 Zhang L W, Yang P, Mao W M. Phenomena of Σ3 and orientation gradients in an electrical steel applied α→γ→α transformation [J]. Acta Metall. Sin., 2017, 53: 19
章楼文, 杨 平, 毛卫民. 电工钢相变组织中的Σ3和取向梯度现象 [J]. 金属学报, 2017, 53: 19
7 Zhang L W, Yang P, Wang J H, et al. Transformation of {100} texture induced by surface effect in ultra-low carbon electrical steel [J]. J. Mater. Sci., 2016, 51: 8087
doi: 10.1007/s10853-016-0078-2
8 Xie L, He M T, Sun L Y, et al. Columnar grain growth in non-oriented electrical steels via plastic deformation of an initial columnar-grained solidification microstructure [J]. Mater. Lett., 2020, 258: 126797
doi: 10.1016/j.matlet.2019.126797
9 Xie L, He M T, Wang J T, et al. Abnormal growth of columnar grains and formation of Σ3 grain boundaries in non-oriented electrical steels [J]. Mater. Lett., 2020, 269: 127671
doi: 10.1016/j.matlet.2020.127671
10 Kovác̆ F, Dz̆ubinský M, Sidor Y. Columnar grain growth in non-oriented electrical steels [J]. J. Magn. Magn. Mater., 2004, 269: 333
doi: 10.1016/S0304-8853(03)00628-0
11 Yang P, Xia D S, Wang J H, et al. Influences of processing parameters on microstructures, textures and magnetic properties in a Fe-0.43Si-0.5Mn electrical steel subjected to phase transformation treatment [A]. Proceedings of 11th CSM steel congress [C]. Beijing: Metallurgical Industry Press, 2017: 1
杨 平, 夏冬生, 王金华 等. 相变法制备Fe-0.43Si-0.5Mn电工钢时工艺参数对组织结构和磁性能的影响 [A]. 第十一届中国钢铁年会论文集——S10. 电工钢 [C]. 北京: 冶金工业出版社, 2017: 1
12 Yang P, Zhang L W, Wang J H, et al. Improvement of texture and magnetic properties by surface effect induced transformation in non-oriented Fe-0.82Si-1.37Mn steel sheets [J]. Steel Res. Int., 2018, 89: 1800045
doi: 10.1002/srin.201800045
13 Kwon S B, Ahn Y K, Jeong Y K, et al. Evolution of cube-on-face texture in Fe-1%Si steel induced by physical contact during the phase transformation from γ to α [J]. Mater. Charact., 2020, 165: 110380
doi: 10.1016/j.matchar.2020.110380
14 Ahn Y K, Kwon S B, Jeong Y K, et al. Fabrication of cube-on-face textured Fe-1wt%Si and Fe-2wt%Si-1wt%Ni electrical steel using surface nucleation during γα phase transformation [J]. Mater. Charact., 2020, 170: 110724
doi: 10.1016/j.matchar.2020.110724
15 Xie L, Yang P, Zhang N, et al. Texture optimization for intermediate Si-containing non-oriented electrical steel [J]. J. Mater. Eng. Perform., 2014, 23: 3849
doi: 10.1007/s11665-014-1201-7
16 Tomida T, Tanaka T. Development of (100) texture in silicon steel sheets by removal of manganese and decarburization [J]. ISIJ Int., 1995, 35: 548
doi: 10.2355/isijinternational.35.548
17 Tomida T. (100)-textured 3% silicon steel sheets by manganese removal and decarburization [J]. J. Appl. Phys., 1996, 79: 5443
doi: 10.1063/1.362332
18 Tomida T, Uenoya S. Cube oriented 3%Si-1%Mn soft magnetic steel sheets with fine grain structure [J]. IEEE Trans. Magn., 2001, 37: 2318
doi: 10.1109/20.951159
19 Tomida T, Uenoya S, Sano N. Fine-grained doubly oriented silicon steel sheets and mechanism of cube texture development [J]. Mater. Trans., 2003, 44: 1106
doi: 10.2320/matertrans.44.1106
20 Tomida T. A new process to develop (100) texture in silicon steel sheets [J]. J. Mater. Eng. Perform., 1996, 5: 316
doi: 10.1007/BF02649333
21 Mao W M, Wu Y, Yu Y N, et al. Formation mechanism of texture in a new type of doubly oriented cold rolled steel [J]. Iron Steel, 2002, 37(8): 53
毛卫民, 吴 勇, 余永宁 等. 新型冷轧双取向硅钢组织与织构的形成机理 [J]. 钢铁, 2002, 37(8): 53
22 Wang J H, Yang P, Zhang L W, et al. Formation of a sharp {100}<011> texture in Fe-3%Si-1.7%Mn-0.05%C silicon steel sheets [J]. J. Mater. Sci., 2016, 51: 10116
doi: 10.1007/s10853-016-0240-x
23 Wang J H, Yang P, Mao W M. Retention and evolution of texture in an electrical steel under vacuum annealing [J]. J. Mater. Sci., 2017, 52: 5462
doi: 10.1007/s10853-017-0790-6
24 Wang J H, Yang P, Mao W M. Analysis of {100} texture formation in vacuum annealed electrical steel based on elastic anisotropy and surface energy anisotropy [J]. Steel. Res. Int., 2019, 90: 1800320
doi: 10.1002/srin.201800320
25 Gu C, Yang P, Mao W M. The influence of rolling process on the microstructure, texture and magnetic properties of low grades non-oriented electrical steel after phase transformation annealing [J]. Acta Metall. Sin., 2019, 55: 181
doi: 10.11900/0412.1961.2018.00187
顾 晨, 杨 平, 毛卫民. 轧制工艺对低牌号无取向电工钢相变退火组织、织构与磁性能的影响 [J]. 金属学报, 2019, 55: 181
26 Wei Z G, Yang P, Gu X F, et al. Transformation textures in pure titanium: Texture memory vs surface effect [J]. Mater. Charact., 2020, 164: 110359
doi: 10.1016/j.matchar.2020.110359
27 Walter J L. Control of texture in magnetic material by surface energy [J]. J. Appl. Phys., 1965, 36(3): 1213
doi: 10.1063/1.1714176
[1] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[3] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[4] LI Min, WANG Jijie, LI Haoze, XING Weiwei, LIU Dezhuang, LI Aodi, MA Yingche. Effect of Y on the Solidification Microstructure, Warm Compression Behavior, and Softening Mechanism of Non-Oriented 6.5%Si Electrical Steel[J]. 金属学报, 2023, 59(3): 399-412.
[5] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[6] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[7] JIANG Jiang, HAO Shijie, JIANG Daqiang, GUO Fangmin, REN Yang, CUI Lishan. Quasi-Linear Superelasticity Deformation in an In Situ NiTi-Nb Composite[J]. 金属学报, 2023, 59(11): 1419-1427.
[8] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[9] LI Xiaobing, QIAN Kun, SHU Lei, ZHANG Mengshu, ZHANG Jinhu, CHEN Bo, LIU Kui. Effect of W Content on the Phase Transformation Behavior in Ti-42Al-5Mn- xW Alloy[J]. 金属学报, 2023, 59(10): 1401-1410.
[10] LI Sai, YANG Zenan, ZHANG Chi, YANG Zhigang. Phase Field Study of the Diffusional Paths in Pearlite-Austenite Transformation[J]. 金属学报, 2023, 59(10): 1376-1388.
[11] LI Min, LI Haoze, WANG Jijie, MA Yingche, LIU Kui. Effect of Ce on the Microstructure, High-Temperature Tensile Properties, and Fracture Mode of Strip Casting Non-Oriented 6.5%Si Electrical Steel[J]. 金属学报, 2022, 58(5): 637-648.
[12] SUN Yi, ZHENG Qinyuan, HU Baojia, WANG Ping, ZHENG Chengwu, LI Dianzhong. Mechanism of Dynamic Strain-Induced Ferrite Transformation in a 3Mn-0.2C Medium Mn Steel[J]. 金属学报, 2022, 58(5): 649-659.
[13] LI Wei, JIA Xingqi, JIN Xuejun. Research Progress of Microstructure Control and Strengthening Mechanism of QPT Process Advanced Steel with High Strength and Toughness[J]. 金属学报, 2022, 58(4): 444-456.
[14] CHEN Wei, CHEN Hongcan, WANG Chenchong, XU Wei, LUO Qun, LI Qian, CHOU Kuochih. Effect of Dilatational Strain Energy of Fe-C-Ni System on Martensitic Transformation[J]. 金属学报, 2022, 58(2): 175-183.
[15] JIANG Weining, WU Xiaolong, YANG Ping, GU Xinfu, XIE Qingge. Formation of Dynamic Recrystallization Zone and Characteristics of Shear Texture in Surface Layer of Hot-Rolled Silicon Steel[J]. 金属学报, 2022, 58(12): 1545-1556.
No Suggested Reading articles found!