Please wait a minute...
Acta Metall Sin  2021, Vol. 57 Issue (4): 385-392    DOI: 10.11900/0412.1961.2020.00359
Overview Current Issue | Archive | Adv Search |
Lattice Distortion in High-Entropy Alloys
YANG Yong1,2(), HE Quanfeng1
1.Department of Mechanical Engineering, College of Engineering, City University of Hong Kong, Hong Kong 999077, China
2.Department of Materials Science and Engineering, College of Engineering, City University of Hong Kong, Hong Kong 999077, China
Cite this article: 

YANG Yong, HE Quanfeng. Lattice Distortion in High-Entropy Alloys. Acta Metall Sin, 2021, 57(4): 385-392.

Download:  HTML  PDF(1866KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Lattice distortion has been deemed as one of the most distinctive structural features of high-entropy alloys. However, despite its fundamental importance, the notion of lattice distortion and its characterization is still an issue under debate. In this work, based on the recent work on theoretical modeling, atomistic simulations and experiments, the physical origin of lattice distortion in high-entropy alloys and its resultant intrinsic residual stresses or strains are discussed.

Key words:  high-entropy alloy      lattice distortion      residual strain      theoretical modeling      numerical modeling     
Received:  09 September 2020     
ZTFLH:  TG131  
Fund: Research Grants Council, RGC(CityU11200719)
About author:  YANG Yong, professor, Tel: (00852)34429394, E-mail: yonyang@cityu.edu.hk

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2020.00359     OR     https://www.ams.org.cn/EN/Y2021/V57/I4/385

Fig.1  The potential energy variation with the average inter-atomic distance in high-entropy alloys
Fig.2  The contour plots of the local atomic strain components derived from the fcc FeCoNiCr alloy in the (001) plane[20]
Fig.3  The distributions of the atomic strain components in fcc FeCoNiCr[20]
Fig.4  The correlation between root mean square (R.M.S.) residual strain εRMS and the phase of different alloys[19]
Fig.5  Normalized pair distribution function G(r) (r—radius) (a) and full width at half maximum (FWHM) values from Gaussian fits of G(r) (b)[28]
Fig.6  Lattice strain and strain fluctuations in Al0.1CoCr- FeNi high-entropy alloy[29](a) contour map of residual strain in (220) plane(b) contour map of residual strain in (22ˉ0) plane(c, d) line scan profiles of residual strain drawnfrom Figs.6a and b, respectively (e) frequency distributions of residual strain
1 Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
2 Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, A375-377: 213
3 Ye Y F, Wang Q, Lu J, et al. High-entropy alloy: Challenges and prospects [J]. Mater. Today, 2016, 19: 349
4 Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys [J]. Prog. Mater. Sci., 2014, 61: 1
5 Zhang W R, Liaw P K, Zhang Y. Science and technology in high-entropy alloys [J]. Sci. China Mater., 2018, 61: 2
6 He Q F, Ding Z Y, Ye Y F, et al. Design of high-entropy alloy: A perspective from nonideal mixing [J]. JOM, 2017, 69: 2092
7 Li Z M, Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off [J]. Nature, 2016, 534: 227
8 Lei Z F, Liu X J, Wu Y, et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes [J]. Nature, 2018, 563: 546
9 Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications [J]. Science, 2014, 345: 1153
10 Schuh B, Mendez-Martin F, Völker B, et al. Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation [J]. Acta Mater., 2015, 96: 258
11 Chuang M H, Tsai M H, Wang W R, et al. Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys [J]. Acta Mater., 2011, 59: 6308
12 Chuang M H, Tsai M H, Tsai C W, et al. Intrinsic surface hardening and precipitation kinetics of Al0.3CrFe1.5MnNi0.5 multi-component alloy [J]. J. Alloys Compd., 2013, 551: 12
13 Shuang S, Ding Z Y, Chung D, et al. Corrosion resistant nanostructured eutectic high entropy alloy [J]. Corros. Sci., 2020, 164: 108315
14 Yeh J W. Alloy design strategies and future trends in high-entropy alloys [J]. JOM, 2013, 65: 1759
15 Pickering E J, Jones N G. High-entropy alloys: A critical assessment of their founding principles and future prospects [J]. Int. Mater. Rev., 2016, 61: 183
16 Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts [J]. Acta Mater., 2017, 122: 448
17 Antillon E, Woodward C, Rao S I, et al. Chemical short range order strengthening in a model FCC high entropy alloy [J]. Acta Mater., 2020, 190: 29
18 He Q F, Yang Y. On lattice distortion in high entropy alloys [J]. Front. Mater., 2018, 5: 42
19 Ye Y F, Liu C T, Yang Y. A geometric model for intrinsic residual strain and phase stability in high entropy alloys [J]. Acta Mater., 2015, 94: 152
20 Ye Y F, Zhang Y H, He Q F, et al. Atomic-scale distorted lattice in chemically disordered equimolar complex alloys [J]. Acta Mater., 2018, 150: 182
21 Lee C, Song G, Gao M C, et al. Lattice distortion in a strong and ductile refractory high-entropy alloy [J]. Acta Mater., 2018, 160: 158
22 Mizutani U. Hume-Rothery Rules for Structurally Complex Alloy Phases [M]. Boca Raton, FL: CRC Press, 2011: 1
23 Song H Q, Tian F Y, Hu Q M, et al. Local lattice distortion in high-entropy alloys [J]. Phys. Rev. Mater., 2017, 1: 023404
24 Owen L R, Jones N G. Lattice distortions in high-entropy alloys [J]. J. Mater. Res., 2018, 33: 2954
25 Zhang Y, Zhou Y J, Lin J P, et al. Solid-solution phase formation rules for multi-component alloys [J]. Adv. Eng. Mater., 2008, 10: 534
26 Wang Z J, Huang Y H, Yang Y, et al. Atomic-size effect and solid solubility of multicomponent alloys [J]. Scr. Mater., 2015, 94: 28
27 Ge H J, Tian F Y. A review of ab initio calculation on lattice distortion in high-entropy alloys [J]. JOM, 2019, 71: 4225
28 Owen L R, Pickering E J, Playford H Y, et al. An assessment of the lattice strain in the CrMnFeCoNi high-entropy alloy [J]. Acta Mater., 2017, 122: 11
29 Shao Y T, Yuan R L, Hu Y, et al. The paracrystalline nature of lattice distortion in a high entropy alloy [Z]. arXiv preprint arXiv:1903.04082, 2019
30 Huang K. Solid State Physics [M]. Beijing: People Education Press, 1979: 1
黄 昆. 固体物理学 [M]. 北京: 人民教育出版社, 1979: 1
31 Patterson J D, Bailey B C. Solid-State Physics: Introduction to the Theory [M]. Berlin, Heidelberg: Springer, 2007: 1
32 Finney J L. Random packings and the structure of simple liquids. I. The geometry of random close packing [J]. Proc. Roy. Soc. London, 1970, 319A: 479
33 Yang X, Zhang Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys [J]. Mater. Chem. Phys., 2012, 132: 233
34 King H W. Quantitative size-factors for metallic solid solutions [J]. J. Mater. Sci., 1966, 1: 79
35 Eshelby J D. The continuum theory of lattice defects [A].
Seitz F, Turnbull D. Solid State Physics [M]. New York: Academic Press, 1956: 79
36 Yeh J W, Lin S J, Chin T S, et al. Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements [J]. Metall. Mater. Trans., 2004, 35A: 2533
37 Yeh J W, Chang S Y, Hong Y D, et al. Anomalous decrease in X-ray diffraction intensities of Cu-Ni-Al-Co-Cr-Fe-Si alloy systems with multi-principal elements [J]. Mater. Chem. Phys., 2007, 103: 41
38 Zhang F X, Tong Y, Jin K, et al. Lattice distortion and phase stability of Pd-doped NiCoFeCr solid-solution alloys [J]. Entropy, 2018, 20: 900
[1] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[2] LIU Junpeng, CHEN Hao, ZHANG Chi, YANG Zhigang, ZHANG Yong, DAI Lanhong. Progress of Cryogenic Deformation and Strengthening-Toughening Mechanisms of High-Entropy Alloys[J]. 金属学报, 2023, 59(6): 727-743.
[3] FENG Li, WANG Guiping, MA Kai, YANG Weijie, AN Guosheng, LI Wensheng. Microstructure and Properties of AlCo x CrFeNiCu High-Entropy Alloy Coating Synthesized by Cold Spraying Assisted Induction Remelting[J]. 金属学报, 2023, 59(5): 703-712.
[4] MIAO Junwei, WANG Mingliang, ZHANG Aijun, LU Yiping, WANG Tongmin, LI Tingju. Tribological Properties and Wear Mechanism of AlCr1.3TiNi2 Eutectic High-Entropy Alloy at Elevated Temperature[J]. 金属学报, 2023, 59(2): 267-276.
[5] HU Wenbin, ZHANG Xiaowen, SONG Longfei, LIAO Bokai, WAN Shan, KANG Lei, GUO Xingpeng. Corrosion Behavior of AlCoCrFeNi2.1 Eutectic High-Entropy Alloy in Sulfuric Acid Solution[J]. 金属学报, 2023, 59(12): 1644-1654.
[6] HAN Linzhi, MU Juan, ZHOU Yongkang, ZHU Zhengwang, ZHANG Haifeng. Effect of Heat Treatment Temperature on Microstructure and Mechanical Properties of Ti0.5Zr1.5NbTa0.5Sn0.2 High-Entropy Alloy[J]. 金属学报, 2022, 58(9): 1159-1168.
[7] ZHAO Xiaofeng, LI Ling, ZHANG Han, LU Jie. Research Progress in High-Entropy Alloy Bond Coat Material for Thermal Barrier Coatings[J]. 金属学报, 2022, 58(4): 503-512.
[8] XU Liujie, ZONG Le, LUO Chunyang, JIAO Zhaolin, WEI Shizhong. Toughening Pathways and Regulatory Mechanisms of Refractory High-Entropy Alloys[J]. 金属学报, 2022, 58(3): 257-271.
[9] ZHANG Jinyu, QU Qimeng, WANG Yaqiang, WU Kai, LIU Gang, SUN Jun. Research Progress on Irradiation Effects and Mechanical Properties of Metal/High-Entropy Alloy Nanostructured Multilayers[J]. 金属学报, 2022, 58(11): 1371-1384.
[10] AN Zibing, MAO Shengcheng, ZHANG Ze, HAN Xiaodong. Strengthening-Toughening Mechanism and Mechanical Properties of Span-Scale Heterostructure High-Entropy Alloy[J]. 金属学报, 2022, 58(11): 1441-1458.
[11] CUI Hongzhi, JIANG Di. Research Progress of High-Entropy Alloy Coatings[J]. 金属学报, 2022, 58(1): 17-27.
[12] SUN Shijie, TIAN Yanzhong, ZHANG Zhefeng. Strengthening and Toughening Mechanisms of Precipitation- Hardened Fe53Mn15Ni15Cr10Al4Ti2C1 High-Entropy Alloy[J]. 金属学报, 2022, 58(1): 54-66.
[13] WANG Hongwei, HE Zhufeng, JIA Nan. Microstructure and Mechanical Properties of a FeMnCoCr High-Entropy Alloy with Heterogeneous Structure[J]. 金属学报, 2021, 57(5): 632-640.
[14] DING Jun, WANG Zhangjie. Local Chemical Order in High-Entropy Alloys[J]. 金属学报, 2021, 57(4): 413-424.
[15] WANG Yihan, YUAN Yuan, YU Jiabin, WU Honghui, WU Yuan, JIANG Suihe, LIU Xiongjun, WANG Hui, LU Zhaoping. Design for Thermal Stability of Nanocrystalline Alloys Based on High-Entropy Effects[J]. 金属学报, 2021, 57(4): 403-412.
No Suggested Reading articles found!