Please wait a minute...
Acta Metall Sin  2021, Vol. 57 Issue (1): 111-120    DOI: 10.11900/0412.1961.2020.00186
Research paper Current Issue | Archive | Adv Search |
Microstructures and Mechanical Properties of TA15 Titanium Alloy and Graphene Reinforced TA15 Composites Prepared by Spark Plasma Sintering
LIN Zhangqian1,2, ZHENG Wei3, LI Hao1,2, WANG Dongjun1,2()
1.School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
2.National Key Laboratory for Precision Hot Processing of Metals, Harbin Institute of Technology, Harbin 150001, China
3.Xi'an Space Engine Company Limited, ;Xi'an 710100, China
Cite this article: 

LIN Zhangqian, ZHENG Wei, LI Hao, WANG Dongjun. Microstructures and Mechanical Properties of TA15 Titanium Alloy and Graphene Reinforced TA15 Composites Prepared by Spark Plasma Sintering. Acta Metall Sin, 2021, 57(1): 111-120.

Download:  HTML  PDF(14901KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Titanium alloys and titanium-based composites are widely used in the field of aerospace owing to their advantages such as low density and high specific strength. Graphene has been found to significantly improve the mechanical properties of metal matrix composites at a lower content due to high modulus, fracture strength, and specific surface area. To achieve excellent mechanical properties, TA15 titanium alloy was fabricated via spark plasma sintering (SPS), and the effects of sintering temperature, sintering time, and sintering pressure on the densification, microstructure, and mechanical properties of the obtained alloys were investigated. The results indicate that the sintering parameters exert trivial effect on the phase composition of the sintered TA15 titanium alloy. The microstructure of the sintered alloy is mainly determined by the sintering temperature, and the prolonged sintering time will cause microstructure coarsening. Meanwhile, the sintering pressure does not have obvious effect on the sintered microstructure. Furthermore, higher sintering temperature, longer sintering time, and accurate increase in sintering pressure contribute to the densification process of TA15 titanium alloy. At room and high temperatures, the comprehensive mechanical properties exhibited by the sintered TA15 titanium alloy are determined by density and microstructure. The dense TA15 titanium alloy can be fabricated via SPS under the sintering conditions of 900oC, 50 MPa, and 5 min. Such alloy exhibits optimally comprehensive mechanical properties at room and high temperatures. Additionally, 0.5% (mass fraction) graphene reinforced TA15 composites were fabricated by SPS under the sintering conditions of 900oC, 50 MPa, and 7 min. When compared with TA15 titanium alloy, the compression yield strength and ultimate compressive strength of composites have significantly improved at room and high temperatures.

Key words:  TA15 titanium alloy      graphene      spark plasma sintering      microstructure      mechanical property     
Received:  29 May 2020     
ZTFLH:  TF124  
Fund: National Natural Science Foundation of China(51674093)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2020.00186     OR     https://www.ams.org.cn/EN/Y2021/V57/I1/111

Sample No.T / oCt / minP / MPaρ / (g·cm-3)
18007504.17
28507504.34
39007504.44
410007504.43
511007504.44
612007504.44
79003504.43
89005504.44
99005204.36
109005354.41
Table 1  The densities of TA15 titanium alloys fabricated using different parameters
Fig.1  XRD spectra of TA15 titanium alloys sintered at different temperatures for 7 min under 50 MPa
Fig.2  SEM images of TA15 titanium alloys sintered at different temperatures for 7 min under 50 MPa
Fig.3  Compression mechanical properties of TA15 titanium alloys sintered at different temperatures for 7 min under 50 MPa
Fig.4  XRD spectra (a) and SEM images of sample No.7 (b), No.8 (c), No.9 (d), and No.10 (e)
Sample No.Room temperature500oC
YS / MPaUCS / MPaδ / %YS / MPaUCS / MPaδ / %
3913.7±3.61475.6±11.225.2±0.1529.9±13.91001.8±35.127.7±0.8
7942.2±19.31536.2±27.020.9±0.6570.2±5.6971.3±12.225.2±1.0
8936.4±11.41641.3±40.025.9±1.1544.1±7.91004.6±31.732.4±1.8
9933.6±11.21413.0±27.417.9±0.9539.6±20.6900.8±35.924.0±0.9
10934.3±9.01449.1±21.518.9±0.7554.1±31.1928.0±30.125.7±0.8
Table 2  Compression mechanical properties of TA15 titanium alloy sintered at different time and pressures
Fig.5  XRD spectrum (a), Raman spectrum (b), Raman surface distribution (The inset shows the corresponding Raman mapping in the white rectangle) (c), SEM image (d), and compressive stress-strain curves (e) of graphene-reinforced TA15 composites
1 Khanna N, Davim J P. Design-of-experiments application in machining titanium alloys for aerospace structural components [J]. Measurement, 2015, 61: 280
2 Williams J C, Starke E A. Progress in structural materials for aerospace systems [J]. Acta Mater., 2003, 51: 5775
3 Singh P, Pungotra H, Kalsi N S. On the characteristics of titanium alloys for the aircraft applications [J]. Mater. Today, 2017, 4: 8971
4 Gao A, Hang R Q, Bai L, et al. Electrochemical surface engineering of titanium-based alloys for biomedical application [J]. Electrochim. Acta, 2018, 271: 699
5 Leyens C, Peters M. Titanium and Titanium Alloys [M]. 2nd Ed., Weinheim: Wiley-VCH, 2003: 2
6 Cheng C, Chen Z Y, Qin X S, et al. Microstructure, texture and mechanical property of TA32 titanium alloy thick plate [J]. Acta Metall. Sin., 2020, 56: 193
程 超, 陈志勇, 秦绪山等. TA32钛合金厚板的微观组织、织构与力学性能 [J]. 金属学报, 2020, 56: 193
7 Xu Q D, Li K J, Cai Z P, et al. Effect of pulsed magnetic field on the microstructure of TC4 titanium alloy and its mechanism [J]. Acta Metall. Sin., 2019, 55: 489
许擎栋, 李克俭, 蔡志鹏等. 脉冲磁场对TC4钛合金微观结构的影响及其机理探究 [J]. 金属学报, 2019, 55: 489
8 Zhu S, Yang H, Guo L G, et al. Effect of cooling rate on microstructure evolution during α/β heat treatment of TA15 titanium alloy [J]. Mater. Charact., 2012, 70: 101
9 Sun Y, Luo G Q, Zhang J, et al. Phase transition, microstructure and mechanical properties of TC4 titanium alloy prepared by plasma activated sintering [J]. J. Alloys Compd., 2018, 741: 918
10 Lütjering G. Influence of processing on microstructure and mechanical properties of (α+β) titanium alloys [J]. Mater. Sci. Eng., 1998, A243: 32
11 Sun Q J, Xie X. Microstructure and mechanical properties of TA15 alloy after thermo-mechanical processing [J]. Mater. Sci. Eng., 2018, A724: 493
12 Kinloch I A, Suhr J, Lou J, et al. Composites with carbon nanotubes and graphene: An outlook [J]. Science, 2018, 362: 547
13 Santosh M V, Suresh K R, Aithal S K. Mechanical characterization and microstructure analysis of Al C355.0 by sand casting, die casting and centrifugal casting techniques [J]. Mater. Today, 2017, 4: 10987
14 Hodbe G A, Shinde B R. Design and simulation of LM 25 sand casting for defect minimization [J]. Mater. Today, 2018, 5: 4489
15 Azevedo J M C, Serrenho A C, Allwood J M. Energy and material efficiency of steel powder metallurgy [J]. Powder Technol., 2018, 328: 329
16 Patil O M, Khedkar N N, Sachit T S, et al. A review on effect of powder metallurgy process on mechanical and tribological properties of hybrid nano composites [J]. Mater. Today, 2018, 5: 5802
17 Sluzalec A. Stochastic characteristics of powder metallurgy processing [J]. Appl. Math. Model., 2015, 39: 7303
18 Li X P, Yan M, Imai H, et al. The critical role of heating rate in enabling the removal of surface oxide films during spark plasma sintering of Al-based bulk metallic glass powder [J]. J. Non-Cryst. Solids, 2013, 375: 95
19 Bonifacio C S, Holland T B, van Benthem K. Evidence of surface cleaning during electric field assisted sintering [J]. Scr. Mater., 2013, 69: 769
20 Zhang Z H, Liu Z F, Lu J F, et al. The sintering mechanism in spark plasma sintering—Proof of the occurrence of spark discharge [J]. Scr. Mater., 2014, 81: 56
21 Ceja-Cárdenas L, Lemus-Ruíz J, Jaramillo-Vigueras D, et al. Spark plasma sintering of α-Si3N4 ceramics with Al2O3 and Y2O3 as additives and its morphology transformation [J]. J. Alloys Compd., 2010, 501: 345
22 Wang D J, Li H, Wang X S, et al. The microstructure evolution and mechanical properties of TiBw/TA15 composite with network structure prepared by rapid current assisted sintering [J]. Metals, 2019, 9: 540
23 Feng H B, Jia D C, Zhou Y. Spark plasma sintering reaction synthesized TiB reinforced titanium matrix composites [J]. Composites, 2005, 36A: 558
24 Wang D J, Yuan H, Qiang J M. The microstructure evolution, mechanical properties and densification mechanism of TiAl-based alloys prepared by spark plasma sintering [J]. Metals, 2017, 7: 201
25 Asl M S, Namini A S, Motallebzadeh A, et al. Effects of sintering temperature on microstructure and mechanical properties of spark plasma sintered titanium [J]. Mater. Chem. Phys., 2018, 203: 266
26 Miklaszewski A, Garbiec D, Niespodziana K. Sintering behavior and microstructure evolution in cp-titanium processed by spark plasma sintering [J]. Adv. Powder Technol., 2018, 29: 50
27 Falodun O E, Obadele B A, Oke S R, et al. Effect of sintering parameters on densification and microstructural evolution of nano-sized titanium nitride reinforced titanium alloys [J]. J. Alloys Compd., 2018, 736: 202
28 Zhang F M, Wang J, Liu T F, et al. Enhanced mechanical properties of few-layer graphene reinforced titanium alloy matrix nanocomposites with a network architecture [J]. Mater. Des., 2020, 186: 108330
29 Zhao Y, Guo H Z, Shi Z F, et al. Microstructure evolution of TA15 titanium alloy subjected to equal channel angular pressing and subsequent annealing at various temperatures [J]. J. Mater. Process. Technol., 2011, 211: 1364
30 Sun Z C, Yang H, Han G J, et al. A numerical model based on internal-state-variable method for the microstructure evolution during hot-working process of TA15 titanium alloy [J]. Mater. Sci. Eng., 2010, A527: 3464
31 Fan X G, Yang H, Yan S L, et al. Mechanism and kinetics of static globularization in TA15 titanium alloy with transformed structure [J]. J. Alloys Compd., 2012, 533: 1
32 Chen H, Mi G B, Li P J, et al. Effects of graphene oxide on microstructure and mechanical properties of 600oC high temperature titanium alloy [J]. J. Mater. Eng., 2019, 47(9): 38
陈 航, 弭光宝, 李培杰等. 氧化石墨烯对600℃高温钛合金微观组织和力学性能的影响 [J]. 材料工程, 2019, 47(9): 38
33 Cao H C, Liang Y L. The microstructures and mechanical properties of graphene-reinforced titanium matrix composites [J]. J. Alloys Compd., 2020, 812: 152057
34 Dong L L, Chen W G, Deng N, et al. A novel fabrication of graphene by chemical reaction with a green reductant [J]. Chem. Eng. J., 2016, 306: 754
35 Mu X N, Zhang H M, Cai H N, et al. Microstructure evolution and superior tensile properties of low content graphene nanoplatelets reinforced pure Ti matrix composites [J]. Mater. Sci. Eng., 2017, A687: 164
36 Nagae T, Yokota M, Nose M, et al. Effects of pulse current on an aluminum powder oxide layer during pulse current pressure sintering [J]. Mater. Trans., 2002, 43: 1390
37 Liu R F, Wang W X, Chen H S, et al. Densification of pure magnesium by spark plasma sintering-discussion of sintering mechanism [J]. Adv. Powder Technol., 2019, 30: 2649
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[6] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[7] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[9] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[10] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[11] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[12] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[13] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[14] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[15] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
No Suggested Reading articles found!