Please wait a minute...
Acta Metall Sin  2019, Vol. 55 Issue (12): 1544-1550    DOI: 10.11900/0412.1961.2019.00140
Research paper Current Issue | Archive | Adv Search |
Crystallization Morphology and Evolution Mechanism of Laser Multiple Remelting of Zr55Cu30Al10Ni5 Metallic Glass
YANG Gaolin1,LIN Xin2(),LU Xiangang1
1. Institute of Laser Advanced Manufacturing, Zhejiang University of Technology, Hangzhou 310014, China
2. State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
Cite this article: 

YANG Gaolin, LIN Xin, LU Xiangang. Crystallization Morphology and Evolution Mechanism of Laser Multiple Remelting of Zr55Cu30Al10Ni5 Metallic Glass. Acta Metall Sin, 2019, 55(12): 1544-1550.

Download:  HTML  PDF(11548KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Laser additive manufacturing technology is a feasible technology for the fabrication of bulk metallic glass with complex geometry. It has the characteristics of small molten pool and high cooling rate. However, crystallization often occurs in heat affected zone (HAZ). In this work, laser multiple remelting of Zr55Cu30Al10Ni5 metallic glass by pulsed laser was carried out and the morphological evolution of the HAZ crystalline phase in the multiple remelting process was studied. The results show that with the increase of the remelting times, the crystalline grains number and size are both improved. With the growth of the grains, the crystallization caused by the growth of the crystalline grains in the molten pool also becomes more and more remarkable. Both the size and number of the grains in the HAZ increase linearly with the increase of the remelting times. The nucleation rate and growth rate of different metallic glass plates are close, whereas the initial crystalline grains number and size are different, which are attributed to the different cooling process in the copper casting of the metallic glass plates.

Key words:  Zr55Cu30Al10Ni5 metallic glass      laser multiple remelting      crystallization morphology      evolution     
Received:  05 May 2019     
ZTFLH:  TG24  
Fund: Supported by the Fund of the State Key Laboratory of Solidification Processing in NWPU(No.SKLSP201745);Zhejiang Provincial Natural Science Foundation of China(No.LY16E050014)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2019.00140     OR     https://www.ams.org.cn/EN/Y2019/V55/I12/1544

Sample No.AlNiCuZr
A8.936.1629.8055.11
B7.795.2229.5857.42
C9.695.4732.4352.40
D8.549.1424.1358.19
Table 1  The compositions of different metallic glass plates measured by electron probe (atomic fraction / %)
Fig.1  OM images of No.B Zr55 metallic glass plate after 1~16 times laser remelting (The crystalline grains entrapped in the molten pool by convection are marked in Fig.1e)(a) 1 time (b) 3 times (c) 5 times (d) 7 times (e) 9 times (f) 11 times (g) 13 times (h) 15 times
Fig.2  OM images of No.C metallic glass plate after different times remelting(a) 1 time (b) 3 times (c) 7 times (d) 13 times
Fig.3  The microstructure evolutions of spherulitic crystallization during multiple laser remelting No.B Zr55 metallic glass plate(a) 1 time (b) 2 times (c) 3 times (d) 4 times (e) 8 times (f) 15 times
Fig.4  The microstructure evolutions of spherulitic crystallization during multiple laser remelting No.C metallic glass plate(a) 2 times (b) 3 times (c) 4 times (d) 6 times (e) 8 times (f) 10 times (g) 12 times (h) 15 times
Fig.5  Bright field TEM images of the remelting No.C Zr55 metallic glass plate (Insets are the corresponding SAED patterns)(a) Al5Ni3Zr2 phase and amorphous phase (b) Cu10Zr7 phase and amorphous phase
Fig.6  SEM image of microstructure (a) and corresponding EPMA images of Al (b), Ni (c), Cu (d) and Zr (e) of crystallization at heat affected zone of No.A metallic glass
Fig.7  Nucleation variation during multiple laser remelting No.B and No.C metallic glass plates
Fig.8  Variation of spherulitic crystallization diameters during multiple laser remelting No.B and No.C metallic glass plates
[1] Inoue A. Bulk glassy alloys: Historical development and current research [J]. Engineering, 2015, 1: 185
[2] Hu Z Q, Zhang H F. Recent progress in the area of bulk amorphous alloys and composites [J]. Acta Metall. Sin., 2010, 46: 1391
[2] (胡壮麒, 张海峰. 块状非晶合金及其复合材料研究进展 [J]. 金属学报, 2010, 46: 1391)
[3] Trexler M M, Thadhani N N. Mechanical properties of bulk metallic glasses [J]. Prog. Mater. Sci., 2010, 55: 759
[4] Li H X, Lu Z C, Wang S L, et al. Fe-based bulk metallic glasses: Glass formation, fabrication, properties and applications [J]. Prog. Mater. Sci., 2019, 103: 235
[5] Wang Y S, Linghu R K, Liu Y Y, et al. Superplasticity and constitutive relationship in a Ti-based metallic glassy composite [J]. J. Alloys Compd., 2018, 751: 391
[6] Gong P, Kou H C, Wang S B, et al. Research on thermoplastic formability and nanomoulding mechanism of lightweight Ti-based bulk metallic glasses [J]. J. Alloys Compd., 2019, 801: 267
[7] Hui X D, Chen G L. Bulk Amorphous Alloys [M]. Beijing: Chemical Industry Press., 2007: 1
[7] (惠希东, 陈国良. 块体非晶合金 [M]. 北京: 化学工业出版社, 2007: 1)
[8] Wang W H. The Nature and properties of amorphous matter [J]. Prog. Phys., 2013, 33: 177
[8] (汪卫华. 非晶态物质的本质和特性 [J]. 物理学进展, 2013, 33: 177)
[9] Chen H S. Glassy metals [J]. Rep. Prog. Phys., 1980, 43: 353
[10] Wen X L, Wang Q Z, Mu Q, et al. Laser solid forming additive manufacturing TiB2 reinforced 2024Al composite: Microstructure and mechanical properties [J]. Mater. Sci. Eng., 2019, A745: 319
[11] Zhang Y Y, Lin X, Wang L L, et al. Microstructural analysis of Zr55Cu30Al10Ni5 bulk metallic glasses by laser surface remelting and laser solid forming [J]. Intermetallics, 2015, 66: 22
[12] Zhang Y Y, Lin X, Wei L, et al. Influence of powder size on the crystallization behavior during laser solid forming Zr55Cu30Al10Ni5 bulk amorphous alloy [J]. Intermetallics, 2016, 76: 1
[13] Mahbooba Z, Thorsson L, Unosson M, et al. Additive manufacturing of an iron-based bulk metallic glass larger than the critical casting thickness [J]. Appl. Mater. Today, 2018, 11: 264
[14] Lu Y Z, Huang Y J, Wu J. Laser additive manufacturing of structural-graded bulk metallic glass [J]. J. Alloys Compd., 2018, 766: 506
[15] Shen Y Y, Li Y Q, Chen C, et al. 3D printing of large, complex metallic glass structures [J]. Mater. Des., 2017, 117: 213
[16] Li Y Q, Shen Y Y, Chen C, et al. Building metallic glass structures on crystalline metal substrates by laser-foil-printing additive manufacturing [J]. J. Mater. Process. Technol., 2017, 248: 249
[17] Li Y Q, Shen Y Y, Hung C H, et al. Additive manufacturing of Zr-based metallic glass structures on 304 stainless steel substrates via V/Ti/Zr intermediate layers [J]. Mater. Sci. Eng., 2018, A729: 185
[18] Li Y Q, Shen Y Y, Leu M C, et al. Building Zr-based metallic glass part on Ti-6Al-4V substrate by laser-foil-printing additive manufacturing [J]. Acta Mater., 2018, 144: 810
[19] Yang G L, Lin X, Liu F C, et al. Laser solid forming Zr-based bulk metallic glass [J]. Intermetallics, 2012, 22: 110
[20] Yang G L, Lin X, Hu Q, et al. Crystallization behavior of annealed Zr55Cu30Al10Ni5 bulk metallic glass during pulsed laser remelting [J]. Acta Metall. Sin., 2013, 49: 649
[20] (杨高林, 林 鑫, 胡 桥等. Zr55Cu30Al10Ni5块体非晶合金退火处理后脉冲激光重熔晶化行为 [J]. 金属学报, 2013, 49: 649)
[21] Liu W W, Lin X, Yang G L, et al. Crystallization behavior of heat-affected zone by laser remelting bulk metallic glass Zr55Al10Ni5Cu30 [J]. Chin. J. Lasers, 2010, 37: 2104
[21] (刘伟伟, 林 鑫, 杨高林等. 脉冲激光重熔Zr55Al10Ni5Cu30合金非晶的热影响区晶化行为 [J]. 中国激光, 2010, 37: 2104)
[22] Kurz W, Fisher D J, translated by Li J G, Hu Q D. Fundamentals of Solidification [M]. 4th Ed., Beijing: Higher Education Press, 2010: 116
[22] (Kurz W, Fisher D J著, 李建国, 胡侨丹译. 凝固原理 [M]. 第四版, 北京: 高等教育出版社, 2010: 116)
[23] Chen J X, Wang Q, Dong C. Cluster rule in alloy phase and its application in Zr-Al-Ni system [J]. Rare Met. Mater. Eng., 2011, 40: 69
[23] (陈季香, 王 清, 董 闯. 合金相团簇规律及其在Zr-Al-Ni非晶体系中的应用 [J]. 稀有金属材料与工程, 2011, 40: 69)
[24] Hao S M, Jiang M, Li H X. Thermodynamics of Materials [M]. Beijing: Chemical Industry Press, 2004: 240
[24] (郝士明, 蒋 敏, 李洪晓. 材料热力学 [M]. 北京: 化学工业出版社, 2004: 240)
[25] Schroers J, Johnson W L. History dependent crystallization of Zr41Ti14Cu12Ni10Be23 melts [J]. J. Appl. Phys., 2000, 88: 44
[26] Yang G L, Lin X, Hu Q, et al. Effect of specimen temperature on crystallization during laser remeltitng Zr55Cu30Al10Ni5 bulk metallic glass [J]. Acta Metall. Sin., 2013, 49: 925
[26] (杨高林, 林 鑫, 胡 桥等. 试样温度对激光重熔Zr55Cu30Al10Ni5块体非晶合金晶化的影响 [J]. 金属学报, 2013, 49: 925)
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[3] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[4] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[5] CHEN Kaixuan, LI Zongxuan, WANG Zidong, Demange Gilles, CHEN Xiaohua, ZHANG Jiawei, WU Xuehua, Zapolsky Helena. Morphological Evolution of Fe-Rich Precipitates in a Cu-2.0Fe Alloy During Isothermal Treatment[J]. 金属学报, 2023, 59(12): 1665-1674.
[6] FANG Yuanzhi, DAI Guoqing, GUO Yanhua, SUN Zhonggang, LIU Hongbing, YUAN Qinfeng. Effect of Laser Oscillation on the Microstructure and Mechanical Properties of Laser Melting Deposition Titanium Alloys[J]. 金属学报, 2023, 59(1): 136-146.
[7] LI Zhao, JIANG He, WANG Tao, FU Shuhong, ZHANG Yong. Microstructure Evolution of GH2909 Low Expansion Superalloy During Heat Treatment[J]. 金属学报, 2022, 58(9): 1179-1188.
[8] LIANG Chen, WANG Xiaojuan, WANG Haipeng. Formation Mechanism of B2 Phase and Micro-Mechanical Property of Rapidly Solidified Ti-Al-Nb Alloy[J]. 金属学报, 2022, 58(9): 1169-1178.
[9] ZHANG Jinyu, QU Qimeng, WANG Yaqiang, WU Kai, LIU Gang, SUN Jun. Research Progress on Irradiation Effects and Mechanical Properties of Metal/High-Entropy Alloy Nanostructured Multilayers[J]. 金属学报, 2022, 58(11): 1371-1384.
[10] MA Minjing, QU Yinhu, WANG Zhe, WANG Jun, DU Dan. Dynamics Evolution and Mechanical Properties of the Erosion Process of Ag-CuO Contact Materials[J]. 金属学报, 2022, 58(10): 1305-1315.
[11] ZHU Miaoyong, DENG Zhiyin. Evolution and Control of Non-Metallic Inclusions in Steel During Secondary Refining Process[J]. 金属学报, 2022, 58(1): 28-44.
[12] YI Xiaoou, HAN Wentuo, LIU Pingping, FERRONI Francesco, ZHAN Qian, WAN Farong. Defect Production, Evolution, and Thermal Recovery Mechanisms in Radiation Damaged Tungsten[J]. 金属学报, 2021, 57(3): 257-271.
[13] XU Jinghui, LI Longfei, LIU Xingang, LI Hui, FENG Qiang. Thermal-Stress Coupling Effect on Microstructure Evolution of a Fourth-Generation Nickel-Based Single-Crystal Superalloy at 1100oC[J]. 金属学报, 2021, 57(2): 205-214.
[14] LIU Chao, YAO Zhihao, GUO Jing, PENG Zichao, JIANG He, DONG Jianxin. Microstructure Evolution Behavior of Powder Superalloy FGH4720Li at Near Service Temperature[J]. 金属学报, 2021, 57(12): 1549-1558.
[15] LI Juan, ZHAO Honglong, ZHOU Nian, ZHANG Yingzhe, QIN Qingdong, SU Xiangdong. Diffusion Bonding of CoCrFeNiCu High-Entropy Alloy to 304 Stainless Steel[J]. 金属学报, 2021, 57(12): 1567-1578.
No Suggested Reading articles found!