Please wait a minute...
Acta Metall Sin  2018, Vol. 54 Issue (11): 1597-1617    DOI: 10.11900/0412.1961.2018.00392
Materials and Processes Current Issue | Archive | Adv Search |
Friction Stir Welding of Magnesium Alloys: A Review
Zongyi MA1(), Qiao SHANG1,2, Dingrui NI1, Bolv XIAO1
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
Cite this article: 

Zongyi MA, Qiao SHANG, Dingrui NI, Bolv XIAO. Friction Stir Welding of Magnesium Alloys: A Review. Acta Metall Sin, 2018, 54(11): 1597-1617.

Download:  HTML  PDF(10201KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In recent years, the increasing application demand for Mg alloys in automobile, rail transport, aviation and aerospace industries brings about the growing prominence of seeking reliable techniques to join Mg alloys. As a solid state welding method, friction stir welding (FSW) exhibits unique advantages in joining Mg alloys, and thus arouses widespread research interest. This paper emphatically reviewed the research status of conventional friction stir butt-welding of Mg alloys, and highlighted the welding process, microstructure evolution, texture characteristics, mechanical behavior and their interaction mechanisms. It was indicated that the texture plays a vital role in FSW joint performance of wrought Mg alloys, which is quite different from that in the FSW Al alloy joints. The specific strong texture formed in the weld is the main factor that gives rise to the impediment to achieving equal-strength joints to base materials. At the same time, some focuses like the weldability and the factors that influence joint performance in other types of FSW like lap welding, spot welding and double-sided welding; the weldability, interface bonding mechanism, joint performance and its affecting factors and optimization methods in dissimilar FSW between Mg alloys and other materials like Mg alloys of other grades, Al alloys and steels, were summarized and discussed. Finally, the future research and development directions in FSW of Mg alloys were prospected.

Key words:  Mg alloy      friction stir welding      dissimilar welding      microstructure evolution      joint performance     
Received:  20 August 2018     
ZTFLH:  TG457  
Fund: Supported by National Natural Science Foundation of China (No.51331008)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2018.00392     OR     https://www.ams.org.cn/EN/Y2018/V54/I11/1597

Fig.1  Schematic illustration of friction stir welding (FSW)[2]
Fig.2  Macroscopic image of friction stir welded joint of extruded AZ31 alloy (NZ—nugget zone, TMAZ—thermomechanically affected zone, HAZ—heat affected zone, BM—base material)[3]
Fig.3  Optical micrographs of friction stir welded joint of extruded AZ31 alloy[3]
(a) NZ/TMAZ interface on retreating side (RS) (b) NZ center
(c) NZ/TMAZ interface on advancing side (AS)
Fig.4  Texture distribution in stir zone of friction stir welded AZ31 joint (ND—plate normal direction, WD—welding direction, TD—transverse direction)[29]
Fig.5  Schematic illustration of shear layer formation induced by motion of friction stir welding tool (ω—tool rotational rate, ν—tool traverse speed)[30]
Fig.6  Gradual texture variation in TMAZ when approaching NZ boundary in friction stir welded joint of extruded AZ31[3]
No. BM Thickness of BM / mm YS/UTS of BM MPa YS/UTS of joint
MPa
Joint efficiency
%
Ref.
1 Hot-rolled AZ31 2 155/255 80~105/160~190 63~75 [8]
2 Extruded AZ31 6.4 92~158/243 70~96/211~224 87~92 [3]
3 AZ31B-H24 2 215/290 130~180/210~240 72~82 [25]
4 AZ31B-O 6.5 150/230 -/180 78 [26]
5 Hot-rolled AZ31 6 62~135/302~334 (true stress) 70~88/262~267
(true stress)
78~88 [36]
6 Hot-rolled AZ31 6.3 153/250 105/203~215 81~86 [50]
7 AZ31-H24 4 281/321 100~114/185~211 58~66 [51]
8 AZ31 9 122/284 82~105/185~232 65~82 [52]
9 AZ31 2 and 3.2 -/250~270 -/185~230 69~92 [53]
10 AZ31 4 -/275 -/190~255 69~93 [54]
11 AZ31B-H24 4.95 208/309 100~130/170~200 55~65 [42]
12 AZ31B-H24 2 -/286 150~180/200~220 69~78 [55]
13 AZ31-H24 3.175 228/308 95~115/200~226 66~75 [56]
14 Extruded AZ31B 4 -/305 -/175~293 57~96 [57]
15 Hot-rolled AZ31 2 153/250 92~117/216~238 86~95 [58]
16 AZ61 6.3 170/300 110/280 93 [66]
17 Extruded AZ61A 6 217/271 110~177/138~224 51~83 [67]
18 AZ61 2.5 -/320 -/300 94 [68]
19 Extruded AZ61 5 202/289 169~181/229~296 79~100 [69]
20 Extruded AZ80 6 179/330 159~167/274~305 83~92 [16]
21 Extruded AZ80 6.3 246/356 165~230/234~312 65~87 [70]
22 Extruded ZK60 8 165/290 125/250 86 [22]
23 Forged Mg-Zn-Y-Zr 6 120/275 110/260 94 [23]
24 Hot-extruded Mg-5Al-3Sn 2.8 217/297 123~166/245~259 82~87 [71]
25 Hot-extruded Mg-5Al-1Sn 3 -/285 -/223~258 78~91 [72]
26 Hot-rolled ZM21 5, 10 and 25 120/227 102~106/173~198 76~87 [73]
27 Rolled NZ20K 2 -/210 -/191 91 [74]
Table 1  Summary of tensile properties of FSW joints of wrought Mg alloys[3,8,16,22,23,25,26,36,42,50~58,66~74]
Fig.7  Comparison of macroscopic surface morphology (a) and distribution area of extension twins (b) at final stage of tensile deformation of friction stir welded AZ31 joint (The contour of twinning area is highlighted with dashed white lines. The optical microstructure of twinning area is obtained from the region (1) marked with green wireframe in Fig.7b)[29]
Fig.8  Microtextures (parent grain orientations+twin orientations) at different sub-regions in SZ of friction stir welded AZ31 joint at final stage of tensile deformation[29]
Fig.9  The distribution of local tensile strains on side surface of friction stir welded AZ31 joint at different stress levels[29]
Fig.10  Characterization of contraction twinning in NZ center of friction stir welded AZ31 joint at final stage of tensile deformation[3]
(a) macroscopic image of horizontal cross-section (b) distribution area
(c) optical microstructure of the region with needle-like contraction twins (d) Kikuchi band contrast
(e) basal pole figure showing orientation relationship expected for double {1011}-{1012} twin boundaries (38°<1120> ±5°)
Fig.11  TEM images showing interfacial microstructures of friction stir spot welded AZ31 joint with addition of Zn interlayers[105]
(a) adjacent to Mg side (b) next to eutectoid structure
(c) TEM microstructure at center of brazed zone (d) its selected area electron diffraction pattern
Fig.12  Macroscopic image of bobbin-tool friction stir welded joint of extruded AZ31 alloy
Fig.13  TEM interface microstructure of friction stir lap welded joint of AZ31 Mg alloy and steel with Al-containing Zn coating (a), and EDS results obtained from regions B (b), C (c), D (d) and E (e) in Fig.13a[140]
[1] Thomas W M, Nicholas E D, Needham J C, et al.Friction stir butt welding [P]. UK Pat, 9125978.8, 1991
[2] Mishra R S, Ma Z Y.Friction stir welding and processing[J]. Mater. Sci. Eng., 2005, R50: 1
[3] Shang Q, Ni D R, Xue P, et al.Evolution of local texture and its effect on mechanical properties and fracture behavior of friction stir welded joint of extruded Mg-3Al-1Zn alloy[J]. Mater. Charact., 2017, 128: 14
[4] Zhang H, Lin S B, Wu L, et al.The microstructures evolution mechanism of friction stir welded AZ31 magnesium alloy[J]. Rare Met. Mater. Eng., 2005, 34: 1021(张华, 林三宝, 吴林等. AZ31镁合金搅拌摩擦焊接显微组织形成机制[J]. 稀有金属材料与工程, 2005, 34: 1021)
[5] Suhuddin U F H R, Mironov S, Sato Y S, et al. Grain structure evolution during friction-stir welding of AZ31 magnesium alloy[J]. Acta Mater., 2009, 57: 5406
[6] Mironov S, Onuma T, Sato Y S, et al.Microstructure evolution during friction-stir welding of AZ31 magnesium alloy[J]. Acta Mater., 2015, 100: 301
[7] Chang C I, Lee C J, Huang J C.Relationship between grain size and Zener-Holloman parameter during friction stir processing in AZ31 Mg alloys[J]. Scr. Mater., 2004, 51: 509
[8] Commin L, Dumont M, Masse J E, et al.Friction stir welding of AZ31 magnesium alloy rolled sheets: Influence of processing parameters[J]. Acta Mater., 2009, 57: 326
[9] Chang C I, Du X H, Huang J C.Achieving ultrafine grain size in Mg-Al-Zn alloy by friction stir processing[J]. Scr. Mater., 2007, 57: 209
[10] Watanabe H, Tsutsui H, Mukai T, et al.Grain size control of commercial wrought Mg-Al-Zn alloys utilizing dynamic recrystallization[J]. Mater. Trans., 2001, 42: 1200
[11] Tang W, Guo X, McClure J C, et al. Heat input and temperature distribution in friction stir welding[J]. J. Mater. Process. Manuf. Sci., 1998, 7: 163
[12] Hwang Y M, Kang Z W, Chiou Y C, et al.Experimental study on temperature distributions within the workpiece during friction stir welding of aluminum alloys[J]. Int. J. Mach. Tools Manuf., 2008, 48: 778
[13] Albakri A N, Mansoor B, Nassar H, et al.Thermo-mechanical and metallurgical aspects in friction stir processing of AZ31 Mg alloy—A numerical and experimental investigation[J]. J. Mater. Process. Technol., 2013, 213: 279
[14] Tripathi A, Tewari A, Srinivasan N, et al.Microstructural origin of friction stir processed zone in a magnesium alloy[J]. Metall. Mater. Trans., 2015, 46A: 3333
[15] Yang B C, Yan J H, Sutton M A, et al.Banded microstructure in AA2024-T351 and AA2524-T351 aluminum friction stir welds: Part I. Metallurgical studies[J]. Mater. Sci. Eng., 2004, A364: 55
[16] Yang J, Ni D R, Wang D, et al.Friction stir welding of as-extruded Mg-Al-Zn alloy with higher Al content. Part I: Formation of banded and line structures[J]. Mater. Charact., 2014, 96: 142
[17] Mironov S, Motohashi Y, Ito T, et al.Feasibility of friction stir welding for joining and microstructure refinement in a ZK60 magnesium alloy[J]. Mater. Trans., 2007, 48: 3140
[18] Mironov S, Motohashi Y, Kaibyshev R.Grain growth behaviors in a friction-stir-welded ZK60 magnesium alloy[J]. Mater. Trans., 2007, 48: 1387
[19] Tayon W A, Domack M S, Hoffman E K, et al.Texture evolution within the thermomechanically affected zone of an Al-Li alloy 2195 friction stir weld[J]. Metall. Mater. Trans., 2013, 44A: 4906
[20] Feng A H, Xiao B L, Ma Z Y, et al.Effect of friction stir processing procedures on microstructure and mechanical properties of Mg-Al-Zn casting[J]. Metall. Mater. Trans., 2009, 40A: 2447
[21] Xie G M, Ma Z Y, Geng L.Effect of Y Addition on microstructure and mechanical properties of friction stir welded ZK60 alloy[J]. J. Mater. Sci. Technol., 2009, 25: 351
[22] Xie G M, Ma Z Y, Geng L.Effect of microstructural evolution on mechanical properties of friction stir welded ZK60 alloy[J]. Mater. Sci. Eng., 2008, A486: 49
[23] Xie G M, Ma Z Y, Geng L, et al.Microstructural evolution and mechanical properties of friction stir welded Mg-Zn-Y-Zr alloy[J]. Mater. Sci. Eng., 2007, A471: 63
[24] Ma Z Y, Pilchak A L, Juhas M C, et al.Microstructural refinement and property enhancement of cast light alloys via friction stir processing[J]. Scr. Mater., 2008, 58: 361
[25] Chowdhury S H, Chen D L, Bhole S D, et al.Friction stir welded AZ31 magnesium alloy: Microstructure, texture, and tensile properties[J]. Metall. Mater. Trans., 2013, 44A: 323
[26] Woo W, Choo H, Brown D W, et al.Texture variation and its influence on the tensile behavior of a friction-stir processed magnesium alloy[J]. Scr. Mater., 2006, 54: 1859
[27] Yu Z Z, Choo H, Feng Z L, et al.Influence of thermo-mechanical parameters on texture and tensile behavior of friction stir processed Mg alloy[J]. Scr. Mater., 2010, 63: 1112
[28] Park S H C, Sato Y S, Kokawa H. Basal plane texture and flow pattern in friction stir weld of a magnesium alloy[J]. Metall. Mater. Trans., 2003, 34A: 987
[29] Shang Q, Ni D R, Xue P, et al.Improving joint performance of friction stir welded wrought Mg alloy by controlling non-uniform deformation behavior[J]. Mater. Sci. Eng., 2017, A707: 426
[30] Yang J, Ni D R, Xiao B L, et al.Non-uniform deformation in a friction stir welded Mg-Al-Zn joint during stress fatigue[J]. Int. J. Fatigue, 2014, 59: 9
[31] Schneider J A, Nunes A C Jr. Characterization of plastic flow and resulting microtextures in a friction stir weld[J]. Metall. Mater. Trans., 2004, 35B: 777
[32] Fonda R, Reynolds A, Feng C R, et al.Material flow in friction stir welds[J]. Metall. Mater. Trans., 2012, 44A: 337
[33] Farzadfar S A, Sanjari M, Jung I H, et al.Role of yttrium in the microstructure and texture evolution of Mg[J]. Mater. Sci. Eng., 2011, A528: 6742
[34] Mironov S, Yang Q, Takahashi H, et al.Specific character of material flow in near-surface layer during friction stir processing of AZ31 magnesium alloy[J]. Metall. Mater. Trans., 2010, 41A: 1016
[35] Hiscocks J, Diak B J, Gerlich A P, et al.Formation mechanisms of periodic longitudinal microstructure and texture patterns in friction stir welded magnesium AZ80[J]. Mater. Charact., 2016, 122: 22
[36] Xin R L, Liu D J, Li B, et al.Mechanisms of fracture and inhomogeneous deformation on transverse tensile test of friction-stir-processed AZ31 Mg alloy[J]. Mater. Sci. Eng., 2013, A565: 333
[37] Kim M S, Jung J Y, Song Y M, et al.Simulation of microtexture developments in the stir zone of friction stir-welded AZ31 Mg alloys[J]. Int. J. Plast., 2017, 94: 24
[38] Pan W X, Li D S, Tartakovsky A M, et al.A new smoothed particle hydrodynamics non-Newtonian model for friction stir welding: Process modeling and simulation of microstructure evolution in a magnesium alloy[J]. Int. J. Plast., 2013, 48: 189
[39] Wang Y N, Chang C I, Lee C J, et al.Texture and weak grain size dependence in friction stir processed Mg-Al-Zn alloy[J]. Scr. Mater., 2006, 55: 637
[40] Yuan W, Panigrahi S K, Su J Q, et al.Influence of grain size and texture on Hall-Petch relationship for a magnesium alloy[J]. Scr. Mater., 2011, 65: 994
[41] Yu H H, Xin Y C, Wang M Y, et al.Hall-Petch relationship in Mg alloys: A review[J]. J. Mater. Sci. Technol., 2018, 34: 248
[42] Afrin N, Chen D L, Cao X, et al.Microstructure and tensile properties of friction stir welded AZ31B magnesium alloy[J]. Mater. Sci. Eng., 2008, A472: 179
[43] Xin R L, Li B, Liao A L, et al.Correlation between texture variation and transverse tensile behavior of friction-stir-processed AZ31 Mg alloy[J]. Metall. Mater. Trans., 2012, 43A: 2500
[44] Peng J H, Zhang Z, Liu Z, et al.The effect of texture and grain size on improving the mechanical properties of Mg-Al-Zn alloys by friction stir processing[J]. Sci. Rep., 2018, 8: 4196
[45] Zhang D T, Suzuki M, Maruyama K.Microstructural evolution of a heat-resistant magnesium alloy due to friction stir welding[J]. Scr. Mater., 2005, 52: 899
[46] Yu L N, Nakata K, Liao J S.Microstructures and mechanical properties in friction stir zone of thixo-molded AS41 Mg alloy[J]. Mater. Trans., 2009, 50: 2378
[47] Yu L N, Nakata K, Liao J S.Microstructural modification and mechanical property improvement in friction stir zone of thixo-molded AE42 Mg alloy[J]. J. Alloys Compd., 2009, 480: 340
[48] Padmanaban G, Balasubramanian V.Selection of FSW tool pin profile, shoulder diameter and material for joining AZ31B magnesium alloy—An experimental approach[J]. Mater. Des., 2009, 30: 2647
[49] Chowdhury S M, Chen D L, Bhole S D, et al.Tensile properties of a friction stir welded magnesium alloy: Effect of pin tool thread orientation and weld pitch[J]. Mater. Sci. Eng., 2010, A527: 6064
[50] Yang J, Xiao B L, Wang D, et al.Effects of heat input on tensile properties and fracture behavior of friction stir welded Mg-3Al-1Zn alloy[J]. Mater. Sci. Eng., 2010, A527: 708
[51] Lim S, Kim S, Lee C G, et al.Tensile behavior of friction-stir-welded AZ31-H24 Mg alloy[J]. Metall. Mater. Trans., 2005, 36A: 1609
[52] Gharacheh M A, Kokabi A H, Daneshi G H, et al.The influence of the ratio of "rotational speed/traverse speed" (ω/ν) on mechanical properties of AZ31 friction stir welds[J]. Int. J. Mach. Tools Manuf., 2006, 46: 1983
[53] Bruni C, Forcellese A, Gabrielli F, et al.Effect of the ω/ν ratio and sheet thickness on mechanical properties of magnesium alloy FSWed joints[J]. Int. J. Mater. Form., 2010, 3(Suppl.1): 1007
[54] Wang X H, Wang K S.Microstructure and properties of friction stir butt-welded AZ31 magnesium alloy[J]. Mater. Sci. Eng., 2006, A431: 114
[55] Cao X, Jahazi M.Effect of welding speed on the quality of friction stir welded butt joints of a magnesium alloy[J]. Mater. Des., 2009, 30: 2033
[56] Pareek M, Polar A, Rumiche F, et al.Metallurgical evaluation of AZ31B-H24 magnesium alloy friction stir welds[J]. J. Mater. Eng. Perform., 2007, 16: 655
[57] Fu R D, Ji H S, Li Y J, et al.Effect of weld conditions on microstructures and mechanical properties of friction stir welded joints on AZ31B magnesium alloys[J]. Sci. Technol. Weld. Joining, 2012, 17: 174
[58] Forcellese A, Martarelli M, Simoncini M.Effect of process parameters on vertical forces and temperatures developed during friction stir welding of magnesium alloys[J]. Int. J. Adv. Manuf. Technol., 2016, 85: 595
[59] Yang J, Wang D, Xiao B L, et al.Effects of rotation rates on microstructure, mechanical properties, and fracture behavior of friction stir-welded (FSW) AZ31 magnesium alloy[J]. Metall. Mater. Trans., 2013, 44A: 517
[60] Ma Z Y, Feng A H, Chen D L, et al.Recent advances in friction stir welding/processing of aluminum alloys: Microstructural evolution and mechanical properties[J]. Crit. Rev. Solid State Mater. Sci., 2017, 43: 269
[61] Xin R L, Liu D J, Shu X G, et al.Influence of welding parameter on texture distribution and plastic deformation behavior of as-rolled AZ31 Mg alloys[J]. J. Alloys Compd., 2016, 670: 64
[62] Kouadri-Henni A, Barrallier L.Mechanical properties, microstructure and crystallographic texture of magnesium AZ91-D alloy welded by friction stir welding (FSW)[J]. Metall. Mater. Trans., 2014, 45A: 4983
[63] Xiao B L, Yang Q, Yang J, et al.Enhanced mechanical properties of Mg-Gd-Y-Zr casting via friction stir processing[J]. J. Alloys Compd., 2011, 509: 2879
[64] Ni D R, Chen D L, Yang J, et al.Low cycle fatigue properties of friction stir welded joints of a semi-solid processed AZ91D magnesium alloy[J]. Mater. Des., 2014, 56: 1
[65] Liu D J.Local texture, mechanical properties and fracture mechanisms of friction stir welded magnesium alloys [D]. Chongqing: Chongqing University, 2014(刘德佳. 搅拌摩擦焊接镁合金微区织构、力学性能与断裂机制 [D]. 重庆: 重庆大学, 2014)
[66] Park S H C, Sato Y S, Kokawa H. Effect of micro-texture on fracture location in friction stir weld of Mg alloy AZ61 during tensile test[J]. Scr. Mater., 2003, 49: 161
[67] Rose A R, Manisekar K, Balasubramanian V.Effect of axial force on microstructure and tensile properties of friction stir welded AZ61A magnesium alloy[J]. Trans. Nonferrous Met. Soc. China, 2011, 21: 974
[68] Srinivasan P B, Zettler R, Blawert C, et al.A study on the effect of plasma electrolytic oxidation on the stress corrosion cracking behaviour of a wrought AZ61 magnesium alloy and its friction stir weldment[J]. Mater. Charact., 2009, 60: 389
[69] Sun S J, Kim J S, Lee W G, et al.Influence of friction stir welding on mechanical properties of butt joints of AZ61 magnesium alloy[J]. Adv. Mater. Sci. Eng., 2017, 2017: 7381403
[70] Hiscocks J, Diak B J, Gerlich A P, et al.Influence of magnesium AZ80 friction stir weld texture on tensile strain localisation[J]. Mater. Sci. Technol., 2016, 33: 189
[71] Pan F S, Xu A L, Deng D A, et al.Effects of friction stir welding on microstructure and mechanical properties of magnesium alloy Mg-5Al-3Sn[J]. Mater. Des., 2016, 110: 266
[72] Pan F S, Xu A L, Ye J H, et al.Effects of rotation rate on microstructure and mechanical properties of friction stir-welded Mg-5Al-1Sn magnesium alloy[J]. Int. J. Adv. Manuf. Technol., 2016, 91: 389
[73] Harikrishna K L, Dilip J J S, Choudary K R, et al. Friction stir welding of magnesium alloy ZM21[J]. Trans. Indian Inst. Met., 2010, 63: 807
[74] Zhao Y, Wang Q Z, He X D, et al.Microstructure and mechanical properties of friction stir-welded Mg-2Nd-0.3Zn-0.4Zr magnesium alloy[J]. J. Mater. Eng. Perform., 2014, 23: 4136
[75] Liu D J, Xin R L, Xiao Y, et al.Strain localization in friction stir welded magnesium alloy during tension and compression deformation[J]. Mater. Sci. Eng., 2014, A609: 88
[76] Mironov S, Onuma T, Sato Y S, et al.Tensile behavior of friction-stir welded AZ31 magnesium alloy[J]. Mater. Sci. Eng., 2017, A679: 272
[77] Liu D J, Xin R L, Li Z Y, et al.The activation of twinning and texture evolution during bending of friction stir welded magnesium alloys[J]. Mater. Sci. Eng., 2015, A646: 145
[78] Mironov S, Onuma T, Sato Y S, et al.Microstructural changes during tension of friction-stir welded AZ31 magnesium alloy[J]. Mater. Charact., 2017, 130: 1
[79] He W J, Luan B F, Xin R L, et al.A multi-scale model for description of strain localization in friction stir welded magnesium alloy[J]. Comp. Mater. Sci., 2015, 104: 162
[80] Liu G, Xin R, Li J, et al.Fracture localisation in retreating side of friction stir welded magnesium alloy[J]. Sci. Technol. Weld. Joining, 2015, 20: 378
[81] Barnett M R.Twinning and the ductility of magnesium alloys Part II. "Contraction" twins[J]. Mater. Sci. Eng., 2007, A464: 8
[82] Cizek P, Barnett M R.Characteristics of the contraction twins formed close to the fracture surface in Mg-3Al-1Zn alloy deformed in tension[J]. Scr. Mater., 2008, 59: 959
[83] Yang J, Ni D R, Wang D, et al.Strain-controlled low-cycle fatigue behavior of friction stir-welded AZ31 magnesium alloy[J]. Metall. Mater. Trans., 2014, 45A: 2101
[84] Zhou L, Li Z Y, Nakata K, et al.Microstructure and fatigue behavior of friction stir-welded noncombustive Mg-9Al-Zn-Ca magnesium alloy[J]. J. Mater. Eng. Perform., 2016, 25: 2403
[85] Xu N, Song Q N, Fujii H, et al.Mechanical properties' modification of large load friction stir welded AZ31B Mg alloy joint[J]. Mater. Lett., 2018, 219: 93
[86] Lee C J, Huang J C, Du X H.Improvement of yield stress of friction-stirred Mg-Al-Zn alloys by subsequent compression[J]. Scr. Mater., 2007, 56: 875
[87] Xin R L, Liu D J, Xu Z R, et al.Changes in texture and microstructure of friction stir welded Mg alloy during post-rolling and their effects on mechanical properties[J]. Mater. Sci. Eng., 2013, A582: 178
[88] Xin R L, Sun L Y, Liu D J, et al.Effect of subsequent tension and annealing on microstructure evolution and strength enhancement of friction stir welded Mg alloys[J]. Mater. Sci. Eng., 2014, A602: 1
[89] Liu Z, Xin R L, Li D R, et al.Comparative study on twinning characteristics during two post-weld compression paths and their effects on joint enhancement[J]. Sci. Rep., 2016, 6: 39779
[90] Yuan W, Carlson B, Verma R, et al.Study of top sheet thinning during friction stir lap welding of AZ31 magnesium alloy[J]. Sci. Technol. Weld. Joining, 2013, 17: 375
[91] Cao X, Jahazi M.Effect of tool rotational speed and probe length on lap joint quality of a friction stir welded magnesium alloy[J]. Mater. Des., 2011, 32: 1
[92] Yang Q, Li X, Chen K, et al.Effect of tool geometry and process condition on static strength of a magnesium friction stir lap linear weld[J]. Mater. Sci. Eng., 2011, A528: 2463
[93] Moraes J F C, Rodriguez R I, Jordon J B, et al. Effect of overlap orientation on fatigue behavior in friction stir linear welds of magnesium alloy sheets[J]. Int. J. Fatigue, 2017, 100: 1
[94] Naik B S, Chen D L, Cao X, et al.Microstructure and fatigue properties of a friction stir lap welded magnesium alloy[J]. Metall. Mater. Trans., 2013, 44A: 3732
[95] Naik B S, Chen D L, Cao X, et al.Texture development in a friction stir lap-welded AZ31B magnesium alloy[J]. Metall. Mater. Trans., 2014, 45A: 4333
[96] Naik B S, Cao X J, Wanjara P, et al.Residual stresses and tensile properties of friction stir welded AZ31B-H24 magnesium alloy in lap configuration[J]. Metall. Mater. Trans., 2015, 46B: 1626
[97] Horie S, Shinozaki K, Yamamoto M, et al.Experimental investigation of material flow during friction stir spot welding[J]. Sci. Technol. Weld. Joining, 2010, 15: 666
[98] Yuan W, Mishra R S, Carlson B, et al.Material flow and microstructural evolution during friction stir spot welding of AZ31 magnesium alloy[J]. Mater. Sci. Eng., 2012, A543: 200
[99] Solanki K N, Jordon J B, Whittington W, et al.Structure-property relationships and residual stress quantification of a friction stir spot welded magnesium alloy[J]. Scr. Mater., 2012, 66: 797
[100] Sun N, North T H, Chen D R, et al.Influences of welding parameters on mechanical properties of AZ31 friction stir spot welds[J]. Sci. Technol. Weld. Joining, 2013, 17: 304
[101] Lin Y C, Liu J J, Lin B Y, et al.Effects of process parameters on strength of Mg alloy AZ61 friction stir spot welds[J]. Mater. Des., 2012, 35: 350
[102] Yin Y H, Sun N, North T H, et al.Hook formation and mechanical properties in AZ31 friction stir spot welds[J]. J. Mater. Process. Technol., 2010, 210: 2062
[103] Yin Y H, Sun N, North T H, et al.Influence of tool design on mechanical properties of AZ31 friction stir spot welds[J]. Sci. Technol. Weld. Joining, 2013, 15: 81
[104] Shen J, Wang D, Liu K.Effects of pin diameter on microstructures and mechanical properties of friction stir spot welded AZ31B magnesium alloy joints[J]. Sci. Technol. Weld. Joining, 2013, 17: 357
[105] Xu R Z, Ni D R, Yang Q, et al.Influence of Zn interlayer addition on microstructure and mechanical properties of friction stir welded AZ31 Mg alloy[J]. J. Mater. Sci., 2015, 50: 4160
[106] Xu R Z, Ni D R, Yang Q, et al.Influencing mechanism of Zn interlayer addition on hook defects of friction stir spot welded Mg-Al-Zn alloy joints[J]. Mater. Des., 2015, 69: 163
[107] Xu R Z, Ni D R, Yang Q, et al.Pinless friction stir spot welding of Mg-3Al-1Zn alloy with Zn interlayer[J]. J. Mater. Sci. Technol., 2016, 32: 76
[108] Su P, Gerlich A, Yamamoto M, et al.Formation and retention of local melted films in AZ91 friction stir spot welds[J]. J. Mater. Sci., 2007, 42: 9954
[109] Yamamoto M, Gerlich A, North T H, et al.Cracking in the stir zones of Mg-alloy friction stir spot welds[J]. J. Mater. Sci., 2007, 42: 7657
[110] Yamamoto M, Gerlich A, North T H, et al.Mechanism of cracking in AZ91 friction stir spot welds[J]. Sci. Technol. Weld. Joining, 2007, 12: 208
[111] Li W Y, Fu T, Hütsch L, et al.Effects of tool rotational and welding speed on microstructure and mechanical properties of bobbin-tool friction-stir welded Mg AZ31[J]. Mater. Des., 2014, 64: 714
[112] Chen J, Fujii H, Sun Y F, et al.Fine grained Mg-3Al-1Zn alloy with randomized texture in the double-sided friction stir welded joints[J]. Mater. Sci. Eng., 2013, A580: 83
[113] Chen J, Ueji R, Fujii H.Double-sided friction-stir welding of magnesium alloy with concave-convex tools for texture control[J]. Mater. Des., 2015, 76: 181
[114] Liu D, Nishio H, Nakata K.Anisotropic property of material arrangement in friction stir welding of dissimilar Mg alloys[J]. Mater. Des., 2011, 32: 4818
[115] Luo C, Li X, Song D, et al.Microstructure evolution and mechanical properties of friction stir welded dissimilar joints of Mg-Zn-Gd and Mg-Al-Zn alloys[J]. Mater. Sci. Eng., 2016, A664: 103
[116] Liu D J, Xin R L, Zheng X, et al.Microstructure and mechanical properties of friction stir welded dissimilar Mg alloys of ZK60-AZ31[J]. Mater. Sci. Eng., 2013, A561: 419
[117] Okamoto H.Desk Handbook—Phase Diagrams for Binary Alloys[M]. Ohio: ASM International, 2000: 36
[118] Shah L H, Othman N H, Gerlich A.Review of research progress on aluminium-magnesium dissimilar friction stir welding[J]. Sci. Technol. Weld. Joining, 2018, 23: 256
[119] Mofid M A, Abdollah-Zadeh A, Ghaini F M.The effect of water cooling during dissimilar friction stir welding of Al alloy to Mg alloy[J]. Mater. Des., 2012, 36: 161
[120] Mofid M A, Abdollah-Zadeh A, Ghaini F M, et al.Submerged friction-stir welding (SFSW) underwater and under liquid nitrogen: An improved method to join Al alloys to Mg alloys[J]. Metall. Mater. Trans., 2012, 43A: 5106
[121] Ji S D, Huang R F, Meng X C, et al.Enhancing friction stir weldability of 6061-T6 Al and AZ31B Mg alloys assisted by external non-rotational shoulder[J]. J. Mater. Eng. Perform., 2017, 26: 2359
[122] Liu Z L, Ji S D, Meng X C, et al.Improving joint formation and tensile properties of friction stir welded ultra-thin Al/Mg alloy sheets using a pinless tool assisted by a stationary shoulder[J]. Int. J. Adv. Manuf. Technol., 2017, 93: 2071
[123] Xu R Z, Ni D R, Yang Q, et al.Influence of Zn coating on friction stir spot welded magnesium-aluminium joint[J]. Sci. Technol. Weld. Joining, 2017, 22: 512
[124] Wang Y, Al-Zubaidy B, Prangnell P B.The effectiveness of Al-Si coatings for preventing interfacial reaction in Al-Mg dissimilar metal welding[J]. Metall. Mater. Trans., 2018, 49A: 162
[125] Gao Y, Morisada Y, Fujii H, et al.Dissimilar friction stir lap welding of magnesium to aluminum using plasma electrolytic oxidation interlayer[J]. Mater. Sci. Eng., 2018, A711: 109
[126] Rai R, De A, Bhadeshia H K D H, et al. Review: Friction stir welding tools[J]. Sci. Technol. Weld. Joining, 2013, 16: 325
[127] Yamamoto N, Liao J S, Watanabe S, et al.Effect of intermetallic compound layer on tensile strength of dissimilar friction-stir weld of a high strength Mg alloy and Al alloy[J]. Mater. Trans., 2009, 50: 2833
[128] Azizieh M, Alavijeh A S, Abbasi M, et al.Mechanical properties and microstructural evaluation of AA1100 to AZ31 dissimilar friction stir welds[J]. Mater. Chem. Phys., 2016, 170: 251
[129] Fu B L, Qin G L, Li F, et al.Friction stir welding process of dissimilar metals of 6061-T6 aluminum alloy to AZ31B magnesium alloy[J]. J. Mater. Process. Technol., 2015, 218: 38
[130] Ji S D, Meng X C, Liu Z L, et al.Dissimilar friction stir welding of 6061 aluminum alloy and AZ31 magnesium alloy assisted with ultrasonic[J]. Mater. Lett., 2017, 201: 173
[131] Liu Z L, Meng X C, Ji S D, et al.Improving tensile properties of Al/Mg joint by smashing intermetallic compounds via ultrasonic-assisted stationary shoulder friction stir welding[J]. J. Manuf. Process., 2018, 31: 552
[132] Lv X Q, Wu C S, Yang C L, et al.Weld microstructure and mechanical properties in ultrasonic enhanced friction stir welding of Al alloy to Mg alloy[J]. J. Mater. Process. Technol., 2018, 254: 145
[133] Jana S, Hovanski Y, Grant G J.Friction stir lap welding of magnesium alloy to steel: A preliminary investigation[J]. Metall. Mater. Trans., 2010, 41A: 3173
[134] Schneider C, Weinberger T, Inoue J, et al.Characterisation of interface of steel/magnesium FSW[J]. Sci. Technol. Weld. Joining, 2011, 16: 100
[135] Chen Y C, Nakata K.Effect of surface states of steel on microstructure and mechanical properties of lap joints of magnesium alloy and steel by friction stir welding[J]. Sci. Technol. Weld. Joining, 2010, 15: 293
[136] Wei Y N, Li J L, Xiong J T, et al.Microstructures and mechanical properties of magnesium alloy and stainless steel weld-joint made by friction stir lap welding[J]. Mater. Des., 2012, 33: 111
[137] Wang X J, Li W H, Zhao G.Connection mechanism research on friction stir spot welding without keyhole between magnesium and steel dissimilar alloys[J]. Mater. Res. Innovations, 2014, 18(Suppl.2): 1063
[138] Chen Y, Chen J, Amirkhiz B S, et al.Microstructures and properties of Mg alloy/DP600 steel dissimilar refill friction stir spot welds[J]. Sci. Technol. Weld. Joining, 2015, 20: 494
[139] Zhang Z K, Wang X J, Wang P C, et al.Friction stir keyholeless spot welding of AZ31 Mg alloy-mild steel[J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 1709
[140] Xu R Z, Ni D R, Yang Q, et al.Influencing mechanism of Al-containing Zn coating on interfacial microstructure and mechanical properties of friction stir spot welded Mg-steel joint[J]. Mater. Charact., 2018, 140: 197
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[3] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[4] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[5] SHEN Zhao, WANG Zhipeng, HU Bo, LI Dejiang, ZENG Xiaoqin, DING Wenjiang. Research Progress on the Mechanisms Controlling High-Temperature Oxidation Resistance of Mg Alloys[J]. 金属学报, 2023, 59(3): 371-386.
[6] GONG Xiangpeng, WU Cuilan, LUO Shifang, SHEN Ruohan, YAN Jun. Effect of Natural Aging on Artificial Aging of an Al-2.95Cu-1.55Li-0.57Mg-0.18Zr Alloy at 160oC[J]. 金属学报, 2023, 59(11): 1428-1438.
[7] PENG Liming, DENG Qingchen, WU Yujuan, FU Penghuai, LIU Ziyi, WU Qianye, CHEN Kai, DING Wenjiang. Additive Manufacturing of Magnesium Alloys by Selective Laser Melting Technology: A Review[J]. 金属学报, 2023, 59(1): 31-54.
[8] FANG Yuanzhi, DAI Guoqing, GUO Yanhua, SUN Zhonggang, LIU Hongbing, YUAN Qinfeng. Effect of Laser Oscillation on the Microstructure and Mechanical Properties of Laser Melting Deposition Titanium Alloys[J]. 金属学报, 2023, 59(1): 136-146.
[9] FENG Di, ZHU Tian, ZANG Qianhao, LEE Yunsoo, FAN Xi, ZHANG Hao. Solution Behavior of Spray-Formed Hypereutectic AlSiCuMg Alloy[J]. 金属学报, 2022, 58(9): 1129-1140.
[10] LI Zhao, JIANG He, WANG Tao, FU Shuhong, ZHANG Yong. Microstructure Evolution of GH2909 Low Expansion Superalloy During Heat Treatment[J]. 金属学报, 2022, 58(9): 1179-1188.
[11] LIANG Chen, WANG Xiaojuan, WANG Haipeng. Formation Mechanism of B2 Phase and Micro-Mechanical Property of Rapidly Solidified Ti-Al-Nb Alloy[J]. 金属学报, 2022, 58(9): 1169-1178.
[12] WU Caihong, FENG Di, ZANG Qianhao, FAN Shichun, ZHANG Hao, LEE Yunsoo. Microstructure Evolution and Recrystallization Behavior During Hot Deformation of Spray Formed AlSiCuMg Alloy[J]. 金属学报, 2022, 58(7): 932-942.
[13] LUO Xuan, HAN Fang, HUANG Tianlin, WU Guilin, HUANG Xiaoxu. Microstructure and Mechanical Properties of Layered Heterostructured Mg-3Gd Alloy[J]. 金属学报, 2022, 58(11): 1489-1496.
[14] MA Minjing, QU Yinhu, WANG Zhe, WANG Jun, DU Dan. Dynamics Evolution and Mechanical Properties of the Erosion Process of Ag-CuO Contact Materials[J]. 金属学报, 2022, 58(10): 1305-1315.
[15] WANG Kaidong, LIU Yunzhong, ZHAN Qiangkun, HUANG Bin. Effect of Adding Methods of Nucleating Agent on Microstructure and Mechanical Properties of Zr Modified Al-Cu-Mg Alloys Prepared by Selective Laser Melting[J]. 金属学报, 2022, 58(10): 1281-1291.
No Suggested Reading articles found!