Current Research and Future Prospect on Microstructure Stability of Superplastic Light Alloys
Huiyuan WANG, Hang ZHANG, Xinyu XU, Min ZHA, Cheng WANG, Pinkui MA, Zhiping GUAN()
Key Laboratory of Automobile Materials of Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun 130025, China
Cite this article:
Huiyuan WANG, Hang ZHANG, Xinyu XU, Min ZHA, Cheng WANG, Pinkui MA, Zhiping GUAN. Current Research and Future Prospect on Microstructure Stability of Superplastic Light Alloys. Acta Metall Sin, 2018, 54(11): 1618-1624.
There have been numerous attempts to achieve superplasticity in light alloy materials for improving the formability and manufacture efficiency of them. However, the superplasticity of light alloy is difficult to realize for the uniform fine equiaxed grains, which are generally required by superplasticity, tend to rapidly grow during high temperature deformation. That means the superplasticity of light alloys not only requires an equiaxed fine-grained structure, but also needs to ensure the high-temperature structural stability. Thus, adding a second phase or alloying elements become one of the current research hotspots on superplasticity of light alloy materials. Currently, the main strategies for improving stability of the fine-grained structure of superplastic light alloy materials can be summarized as: introduction of second-phase particles pinning grain boundaries, phase structure of dual-phase alloys to inhibit growth between each other and reinforcement of composite materials inhibiting grain growth as well as utilizing solute segregation of single-phase alloys. This paper summarizes the research status of superplastic microstructure stability of light alloys including second-phase-containing alloys, duplex alloys, metal matrix composites and single-phase alloys. Finally, the paper proposes the development trend of superplastic light alloy materials from the perspective of industrial applications and cost-reduction requirements. Increasing the variety of alloying element, decreasing the content of alloying element, simplifying the process of manufacture and achieving low temperature superplasticity and high strain-rate superplasticity will be the development trend of superplastic light alloy materials.
Fund: Supported by National Key Research and Development Program of China (No.2016YFE0115300) and National Natural Science Foundation of China (No.51625402)
Fig.1 Schematic showing the mechanism of enhancing microstructure stability in alloy with precipitation particles (a), two-phase alloy (b), metal-matrix composite (c) and single-phase alloy (d)
Strategy
Alloy
Processing method
T / ℃
/ s-1
EL / %
Ref.
Second-phase-
Al-5Mg-0.18Mn-0.2Sc
ECAP
450
5.0×10-2
~4100
[17]
containing alloy
Al-6.1Mg-0.3Mn-0.25Sc
ASR
500
5.0×10-2
~3170
[18]
Mg-8Sn-Al-Zn
Extrusion
200
10-4
~900
[19]
Mg-5Al-5Ca
Extrusion
400
3.6×10-4
~572
[20]
Mg-9Al-1Zn
Rolling
300
10-3
~735
[21]
Mg-7Al-5Zn
HPR
300
10-3
~615
[22]
Duplex alloy
Zn-0.3Al
ECAP
RT
10-4
~1000
[23]
Zn-21Al-2Cu
Extrusion+Rolling
240
10-3
~1000
[24]
Metal matrix
Ti5Si3+40%TiAl
MA+HIP
950
4×10-5
~150
[25]
composite
(volume fraction)
7075Al+10%Al2O3
HPT
350
10-2
~670
[26]
(volume fraction)
6063Al +5%Al3Zr
Forging+FSP
500
10-2
~330
[27]
(mass fraction)
Single-phase alloy
Al-7Mg
ECAP
300
10-3
~500
Table 1 Processing method and superplastic property of each superplastic materials[17,18,19,20,21,22,23,24,25,26,27]
Fig.2 Typical inverse pole figure (IPF) map (a) and SEM image (b) of superplastic bimodal grained magnesium alloys
[1]
Novikov I I. 50-th anniversary of russian investigations on superplasticity [J]. Mater. Sci. Forum, 1994, 170-172: 3
[2]
Yang C, Wang J J, Ma Z Y, et al.Friction stir welding and low-temperature superplasticity of 7B04 Al sheet[J]. Acta Metall. Sin., 2016, 51: 1449(杨超, 王继杰, 马宗义等. 7B04铝合金薄板的搅拌摩擦焊接及接头低温超塑性研究[J]. 金属学报, 2016, 51: 1449)
[3]
Fu M J, Han X Q, Wu W, et al.Superplasticity research of Ti-23Al-17Nb alloy sheet[J]. Acta Metall. Sin., 2014, 50: 955(付明杰, 韩秀全, 吴为等. Ti-23Al-17Nb合金板材超塑性研究[J]. 金属学报, 2014, 50: 955)
[4]
Barnes A J.Superplastic forming 40 years and still growing[J]. J. Mater. Eng. Perform., 2007, 16: 440
[5]
Kawasaki M, Langdon T G.Review: Achieving superplasticity in metals processed by high-pressure torsion[J]. J. Mater. Sci., 2014, 49: 6487
[6]
Sherby O D, Wadsworth J.Superplasticity—Recent advances and future directions[J]. Prog. Mater. Sci., 1989, 33: 169
[7]
Higashi K. Recent advances and future directions in superplasticity [J]. Mater. Sci. Forum, 2001, 357-359: 345
[8]
Guan Z P, Ma P K, Song Y Q.Analysis of fracture during superplastic tension[J]. Acta Metall. Sin., 2013, 49: 1003(管志平, 马品奎, 宋玉泉. 超塑性拉伸断裂分析[J]. 金属学报, 2013, 49: 1003)
[9]
Gu C F, Tóth L S, Field D P, et al.Room temperature equal-channel angular pressing of a magnesium alloy[J]. Acta Mater., 2013, 61: 3027
[10]
Cao G H, Zhang D T, Chai F, et al.Superplastic behavior and microstructure evolution of a fine-grained Mg-Y-Nd alloy processed by submerged friction stir processing[J]. Mater. Sci. Eng., 2015, A642: 157
[11]
Kawasaki M, Langdon T G.Review: Achieving superplastic properties in ultrafine-grained materials at high temperatures[J]. J. Mater. Sci., 2016, 51: 19
[12]
Apps P J, Bowen J R, Prangnell P B.The effect of coarse second-phase particles on the rate of grain refinement during severe deformation processing[J]. Acta Mater., 2003, 51: 2811
[13]
Lee S, Utsunomiya A, Akamatsu H, et al.Influence of scandium and zirconium on grain stability and superplastic ductilities in ultrafine-grained Al-Mg alloys[J]. Acta Mater., 2002, 50: 553
[14]
Bate P S, Huang Y, Humphreys F J.Development of the "brass" texture component during the hot deformation of Al-6Cu-0.4Zr[J]. Acta Mater., 2004, 52: 4281
[15]
Hsiao I C, Huang J C.Deformation mechanisms during low- and high-temperature superplasticity in 5083 Al-Mg alloy[J]. Metall. Mater. Trans., 2002, 33A: 1373
[16]
Romilly P.Superplastic improvement of aluminum 7475-T4 industrial sheets using a heat treatment[J]. Mater. Sci. Forum, 2012, 735: 332
[17]
Avtokratova E, Sitdikov O, Markushev M, et al.Extraordinary high-strain rate superplasticity of severely deformed Al-Mg-Sc-Zr alloy[J]. Mater. Sci. Eng., 2012, A538: 386
[18]
Duan Y L, Xu G F, Tang L, et al.Excellent high strain rate superplasticity of Al-Mg-Sc-Zr alloy sheet produced by an improved asymmetrical rolling process[J]. J. Alloys Compd., 2017, 715: 311
[19]
Park S S, You B S.Low-temperature superplasticity of extruded Mg-Sn-Al-Zn alloy[J]. Scr. Mater., 2011, 65: 202
[20]
Wang X, Chen D, Xiao D, et al.Superplasticity of Mg-Al-Ca alloys with high Ca/Al ratio[J]. Mater. Rev., 2016, 30(20): 71(王新, 陈鼎, 肖迪等. 高Ca/Al比的Mg-Al-Ca合金的超塑性[J]. 材料导报, 2016, 30(20): 71)
[21]
Zha M, Zhang H M, Wang C, et al.Prominent role of a high volume fraction of Mg17Al12 particles on tensile behaviors of rolled Mg-Al-Zn alloys[J]. J. Alloys Compd., 2017, 728: 682
[22]
Rong J, Wang P Y, Zha M, et al.Development of a novel strength ductile Mg-7Al-5Zn alloy with high superplasticity processed by hard-plate rolling (HPR)[J]. J. Alloys Compd., 2018, 738: 246
[23]
Demirtas M, Purcek G, Yanar H, et al.Effect of equal-channel angular pressing on room temperature superplasticity of quasi-single phase Zn-0.3Al alloy[J]. Mater. Sci. Eng., 2015, A644: 17
[24]
Ramos-Azpeitia M, Elizabeth Martínez-Flores E, Hernandez-Rivera J L, et al. Analysis of plastic flow instability during superplastic deformation of the Zn-Al eutectoid alloy modified with 2 wt.% Cu[J]. J. Mater. Eng. Perform., 2017, 26: 5304
Sabbaghianrad S, Langdon T G.Developing superplasticity in an aluminum matrix composite processed by high-pressure torsion[J]. Mater. Sci. Eng., 2016, A655: 36
[27]
Jiao L, Wang X L, Li H, et al.High strain rate superplasticity of in situ Al3Zr/6063Al composites[J]. Rare Met. Mater. Eng., 2016, 45: 2798
[28]
Liu X H, Zhan H B, Gu S H, et al.Superplasticity in a two-phase Mg-8Li-2Zn alloy processed by two-pass extrusion[J]. Mater. Sci. Eng., 2011, A528: 6157
[29]
Zha M, Yu Z Y, Qian F, et al.Achieving dispersed fine soft Bi particles and grain refinement in a hypermonotectic Al-Bi alloy by severe plastic deformation and annealing[J]. Scr. Mater., 2018, 155: 124
[30]
Darling K A, VanLeeuwen B K, Koch C C, et al. Thermal stability of nanocrystalline Fe-Zr alloys[J]. Mater. Sci. Eng., 2010, A527: 3572
[31]
Schuler J D, Donaldson O K, Rupert T J.Amorphous complexions enable a new region of high temperature stability in nanocrystalline Ni-W[J]. Scr. Mater., 2018, 154: 49
[32]
Hu J, Shi Y N, Lu K.Thermal analysis of electrodeposited nano-grained Ni-Mo alloys[J]. Scr. Mater., 2018, 154: 182
[33]
Sun W T, Qiao X G, Zheng M Y, et al.Altered ageing behaviour of a nanostructured Mg-8.2Gd-3.8Y-1.0Zn-0.4Zr alloy processed by high pressure torsion[J]. Acta Mater., 2018, 151: 260
[34]
Zha M, Li Y J, Mathiesen R H, et al.Microstructure evolution and mechanical behavior of a binary Al-7Mg alloy processed by equal-channel angular pressing[J]. Acta Mater., 2015, 84: 42
[35]
Zha M, Li Y J, Mathiesen R H, et al.Annealing response of binary Al-7Mg alloy deformed by equal channel angular pressing[J]. Mater. Sci. Eng., 2013, A586: 374