Please wait a minute...
Acta Metall Sin  2018, Vol. 54 Issue (11): 1618-1624    DOI: 10.11900/0412.1961.2018.00391
Materials and Processes Current Issue | Archive | Adv Search |
Current Research and Future Prospect on Microstructure Stability of Superplastic Light Alloys
Huiyuan WANG, Hang ZHANG, Xinyu XU, Min ZHA, Cheng WANG, Pinkui MA, Zhiping GUAN()
Key Laboratory of Automobile Materials of Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun 130025, China
Cite this article: 

Huiyuan WANG, Hang ZHANG, Xinyu XU, Min ZHA, Cheng WANG, Pinkui MA, Zhiping GUAN. Current Research and Future Prospect on Microstructure Stability of Superplastic Light Alloys. Acta Metall Sin, 2018, 54(11): 1618-1624.

Download:  HTML  PDF(3092KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

There have been numerous attempts to achieve superplasticity in light alloy materials for improving the formability and manufacture efficiency of them. However, the superplasticity of light alloy is difficult to realize for the uniform fine equiaxed grains, which are generally required by superplasticity, tend to rapidly grow during high temperature deformation. That means the superplasticity of light alloys not only requires an equiaxed fine-grained structure, but also needs to ensure the high-temperature structural stability. Thus, adding a second phase or alloying elements become one of the current research hotspots on superplasticity of light alloy materials. Currently, the main strategies for improving stability of the fine-grained structure of superplastic light alloy materials can be summarized as: introduction of second-phase particles pinning grain boundaries, phase structure of dual-phase alloys to inhibit growth between each other and reinforcement of composite materials inhibiting grain growth as well as utilizing solute segregation of single-phase alloys. This paper summarizes the research status of superplastic microstructure stability of light alloys including second-phase-containing alloys, duplex alloys, metal matrix composites and single-phase alloys. Finally, the paper proposes the development trend of superplastic light alloy materials from the perspective of industrial applications and cost-reduction requirements. Increasing the variety of alloying element, decreasing the content of alloying element, simplifying the process of manufacture and achieving low temperature superplasticity and high strain-rate superplasticity will be the development trend of superplastic light alloy materials.

Key words:  superplasticity      microstructure stability      second phase      composite      solute segregation     
Received:  20 August 2018     
ZTFLH:  TG301  
Fund: Supported by National Key Research and Development Program of China (No.2016YFE0115300) and National Natural Science Foundation of China (No.51625402)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2018.00391     OR     https://www.ams.org.cn/EN/Y2018/V54/I11/1618

Fig.1  Schematic showing the mechanism of enhancing microstructure stability in alloy with precipitation particles (a), two-phase alloy (b), metal-matrix composite (c) and single-phase alloy (d)
Strategy Alloy Processing method T / ℃ ε˙ / s-1 EL / % Ref.
Second-phase- Al-5Mg-0.18Mn-0.2Sc ECAP 450 5.0×10-2 ~4100 [17]
containing alloy Al-6.1Mg-0.3Mn-0.25Sc ASR 500 5.0×10-2 ~3170 [18]
Mg-8Sn-Al-Zn Extrusion 200 10-4 ~900 [19]
Mg-5Al-5Ca Extrusion 400 3.6×10-4 ~572 [20]
Mg-9Al-1Zn Rolling 300 10-3 ~735 [21]
Mg-7Al-5Zn HPR 300 10-3 ~615 [22]
Duplex alloy Zn-0.3Al ECAP RT 10-4 ~1000 [23]
Zn-21Al-2Cu Extrusion+Rolling 240 10-3 ~1000 [24]
Metal matrix Ti5Si3+40%TiAl MA+HIP 950 4×10-5 ~150 [25]
composite (volume fraction)
7075Al+10%Al2O3 HPT 350 10-2 ~670 [26]
(volume fraction)
6063Al +5%Al3Zr Forging+FSP 500 10-2 ~330 [27]
(mass fraction)
Single-phase alloy Al-7Mg ECAP 300 10-3 ~500
Table 1  Processing method and superplastic property of each superplastic materials[17,18,19,20,21,22,23,24,25,26,27]
Fig.2  Typical inverse pole figure (IPF) map (a) and SEM image (b) of superplastic bimodal grained magnesium alloys
[1] Novikov I I. 50-th anniversary of russian investigations on superplasticity [J]. Mater. Sci. Forum, 1994, 170-172: 3
[2] Yang C, Wang J J, Ma Z Y, et al.Friction stir welding and low-temperature superplasticity of 7B04 Al sheet[J]. Acta Metall. Sin., 2016, 51: 1449(杨超, 王继杰, 马宗义等. 7B04铝合金薄板的搅拌摩擦焊接及接头低温超塑性研究[J]. 金属学报, 2016, 51: 1449)
[3] Fu M J, Han X Q, Wu W, et al.Superplasticity research of Ti-23Al-17Nb alloy sheet[J]. Acta Metall. Sin., 2014, 50: 955(付明杰, 韩秀全, 吴为等. Ti-23Al-17Nb合金板材超塑性研究[J]. 金属学报, 2014, 50: 955)
[4] Barnes A J.Superplastic forming 40 years and still growing[J]. J. Mater. Eng. Perform., 2007, 16: 440
[5] Kawasaki M, Langdon T G.Review: Achieving superplasticity in metals processed by high-pressure torsion[J]. J. Mater. Sci., 2014, 49: 6487
[6] Sherby O D, Wadsworth J.Superplasticity—Recent advances and future directions[J]. Prog. Mater. Sci., 1989, 33: 169
[7] Higashi K. Recent advances and future directions in superplasticity [J]. Mater. Sci. Forum, 2001, 357-359: 345
[8] Guan Z P, Ma P K, Song Y Q.Analysis of fracture during superplastic tension[J]. Acta Metall. Sin., 2013, 49: 1003(管志平, 马品奎, 宋玉泉. 超塑性拉伸断裂分析[J]. 金属学报, 2013, 49: 1003)
[9] Gu C F, Tóth L S, Field D P, et al.Room temperature equal-channel angular pressing of a magnesium alloy[J]. Acta Mater., 2013, 61: 3027
[10] Cao G H, Zhang D T, Chai F, et al.Superplastic behavior and microstructure evolution of a fine-grained Mg-Y-Nd alloy processed by submerged friction stir processing[J]. Mater. Sci. Eng., 2015, A642: 157
[11] Kawasaki M, Langdon T G.Review: Achieving superplastic properties in ultrafine-grained materials at high temperatures[J]. J. Mater. Sci., 2016, 51: 19
[12] Apps P J, Bowen J R, Prangnell P B.The effect of coarse second-phase particles on the rate of grain refinement during severe deformation processing[J]. Acta Mater., 2003, 51: 2811
[13] Lee S, Utsunomiya A, Akamatsu H, et al.Influence of scandium and zirconium on grain stability and superplastic ductilities in ultrafine-grained Al-Mg alloys[J]. Acta Mater., 2002, 50: 553
[14] Bate P S, Huang Y, Humphreys F J.Development of the "brass" texture component during the hot deformation of Al-6Cu-0.4Zr[J]. Acta Mater., 2004, 52: 4281
[15] Hsiao I C, Huang J C.Deformation mechanisms during low- and high-temperature superplasticity in 5083 Al-Mg alloy[J]. Metall. Mater. Trans., 2002, 33A: 1373
[16] Romilly P.Superplastic improvement of aluminum 7475-T4 industrial sheets using a heat treatment[J]. Mater. Sci. Forum, 2012, 735: 332
[17] Avtokratova E, Sitdikov O, Markushev M, et al.Extraordinary high-strain rate superplasticity of severely deformed Al-Mg-Sc-Zr alloy[J]. Mater. Sci. Eng., 2012, A538: 386
[18] Duan Y L, Xu G F, Tang L, et al.Excellent high strain rate superplasticity of Al-Mg-Sc-Zr alloy sheet produced by an improved asymmetrical rolling process[J]. J. Alloys Compd., 2017, 715: 311
[19] Park S S, You B S.Low-temperature superplasticity of extruded Mg-Sn-Al-Zn alloy[J]. Scr. Mater., 2011, 65: 202
[20] Wang X, Chen D, Xiao D, et al.Superplasticity of Mg-Al-Ca alloys with high Ca/Al ratio[J]. Mater. Rev., 2016, 30(20): 71(王新, 陈鼎, 肖迪等. 高Ca/Al比的Mg-Al-Ca合金的超塑性[J]. 材料导报, 2016, 30(20): 71)
[21] Zha M, Zhang H M, Wang C, et al.Prominent role of a high volume fraction of Mg17Al12 particles on tensile behaviors of rolled Mg-Al-Zn alloys[J]. J. Alloys Compd., 2017, 728: 682
[22] Rong J, Wang P Y, Zha M, et al.Development of a novel strength ductile Mg-7Al-5Zn alloy with high superplasticity processed by hard-plate rolling (HPR)[J]. J. Alloys Compd., 2018, 738: 246
[23] Demirtas M, Purcek G, Yanar H, et al.Effect of equal-channel angular pressing on room temperature superplasticity of quasi-single phase Zn-0.3Al alloy[J]. Mater. Sci. Eng., 2015, A644: 17
[24] Ramos-Azpeitia M, Elizabeth Martínez-Flores E, Hernandez-Rivera J L, et al. Analysis of plastic flow instability during superplastic deformation of the Zn-Al eutectoid alloy modified with 2 wt.% Cu[J]. J. Mater. Eng. Perform., 2017, 26: 5304
[25] Klassen T, Suryanarayana C, Bormann R.Low-temperature superplasticity in ultrafine-grained Ti5Si3-TiAl composites[J]. Scr. Mater., 2008, 59: 455
[26] Sabbaghianrad S, Langdon T G.Developing superplasticity in an aluminum matrix composite processed by high-pressure torsion[J]. Mater. Sci. Eng., 2016, A655: 36
[27] Jiao L, Wang X L, Li H, et al.High strain rate superplasticity of in situ Al3Zr/6063Al composites[J]. Rare Met. Mater. Eng., 2016, 45: 2798
[28] Liu X H, Zhan H B, Gu S H, et al.Superplasticity in a two-phase Mg-8Li-2Zn alloy processed by two-pass extrusion[J]. Mater. Sci. Eng., 2011, A528: 6157
[29] Zha M, Yu Z Y, Qian F, et al.Achieving dispersed fine soft Bi particles and grain refinement in a hypermonotectic Al-Bi alloy by severe plastic deformation and annealing[J]. Scr. Mater., 2018, 155: 124
[30] Darling K A, VanLeeuwen B K, Koch C C, et al. Thermal stability of nanocrystalline Fe-Zr alloys[J]. Mater. Sci. Eng., 2010, A527: 3572
[31] Schuler J D, Donaldson O K, Rupert T J.Amorphous complexions enable a new region of high temperature stability in nanocrystalline Ni-W[J]. Scr. Mater., 2018, 154: 49
[32] Hu J, Shi Y N, Lu K.Thermal analysis of electrodeposited nano-grained Ni-Mo alloys[J]. Scr. Mater., 2018, 154: 182
[33] Sun W T, Qiao X G, Zheng M Y, et al.Altered ageing behaviour of a nanostructured Mg-8.2Gd-3.8Y-1.0Zn-0.4Zr alloy processed by high pressure torsion[J]. Acta Mater., 2018, 151: 260
[34] Zha M, Li Y J, Mathiesen R H, et al.Microstructure evolution and mechanical behavior of a binary Al-7Mg alloy processed by equal-channel angular pressing[J]. Acta Mater., 2015, 84: 42
[35] Zha M, Li Y J, Mathiesen R H, et al.Annealing response of binary Al-7Mg alloy deformed by equal channel angular pressing[J]. Mater. Sci. Eng., 2013, A586: 374
[1] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[2] MA Zongyi, XIAO Bolv, ZHANG Junfan, ZHU Shize, WANG Dong. Overview of Research and Development for Aluminum Matrix Composites Driven by Aerospace Equipment Demand[J]. 金属学报, 2023, 59(4): 457-466.
[3] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[4] MA Guonan, ZHU Shize, WANG Dong, XIAO Bolv, MA Zongyi. Aging Behaviors and Mechanical Properties of SiC/Al-Zn-Mg-Cu Composites[J]. 金属学报, 2023, 59(12): 1655-1664.
[5] JIANG Jiang, HAO Shijie, JIANG Daqiang, GUO Fangmin, REN Yang, CUI Lishan. Quasi-Linear Superelasticity Deformation in an In Situ NiTi-Nb Composite[J]. 金属学报, 2023, 59(11): 1419-1427.
[6] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[7] SHEN Yingying, ZHANG Guoxing, JIA Qing, WANG Yumin, CUI Yuyou, YANG Rui. Interfacial Reaction and Thermal Stability of the SiCf/TiAl Composites[J]. 金属学报, 2022, 58(9): 1150-1158.
[8] GU Ruicheng, ZHANG Jian, ZHANG Mingyang, LIU Yanyan, WANG Shaogang, JIAO Da, LIU Zengqian, ZHANG Zhefeng. Fabrication of Mg-Based Composites Reinforced by SiC Whisker Scaffolds with Three-Dimensional Interpenetrating-Phase Architecture and Their Mechanical Properties[J]. 金属学报, 2022, 58(7): 857-867.
[9] ZHENG Shijian, YAN Zhe, KONG Xiangfei, ZHANG Ruifeng. Interface Modifications on Strength and Plasticity of Nanolayered Metallic Composites[J]. 金属学报, 2022, 58(6): 709-725.
[10] PAN Chengcheng, ZHANG Xiang, YANG Fan, XIA Dahai, HE Chunnian, HU Wenbin. Corrosion and Cavitation Erosion Behavior of GLNN/Cu Composite in Simulated Seawater[J]. 金属学报, 2022, 58(5): 599-609.
[11] WANG Haowei, ZHAO Dechao, WANG Mingliang. A Review of the Corrosion Protection Technology on In SituTiB2/Al Composites[J]. 金属学报, 2022, 58(4): 428-443.
[12] ZHANG Lei, SHI Tao, HUANG Huogen, ZHANG Pei, ZHANG Pengguo, WU Min, FA Tao. Phase Separation and Solidification Sequence of Uranium-Based Amorphous Composites[J]. 金属学报, 2022, 58(2): 225-230.
[13] CHEN Run, WANG Shuai, AN Qi, ZHANG Rui, LIU Wenqi, HUANG Lujun, GENG Lin. Effect of Hot Extrusion and Heat Treatment on the Microstructure and Tensile Properties of Network Structured TiBw/TC18 Composites[J]. 金属学报, 2022, 58(11): 1478-1488.
[14] FAN Genlian, GUO Zhiqi, TAN Zhanqiu, LI Zhiqiang. Architecture Design Strategies and Strengthening-Toughening Mechanisms of Metal Matrix Composites[J]. 金属学报, 2022, 58(11): 1416-1426.
[15] NIE Jinfeng, WU Yuli, XIE Kewei, LIU Xiangfa. Microstructure and Thermal Stability of Heterostructured Al-AlN Nanocomposite[J]. 金属学报, 2022, 58(11): 1497-1508.
No Suggested Reading articles found!