Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (5): 599-606    DOI: 10.11900/0412.1961.2015.00490
Orginal Article Current Issue | Archive | Adv Search |
CORROSION BEHAVIOR OF ALLOY 800 IN NaOH AND ETA SOLUTIONS AT 300 ℃
Jiazhen WANG,Jianqiu WANG(),En-Hou HAN
Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

Jiazhen WANG,Jianqiu WANG,En-Hou HAN. CORROSION BEHAVIOR OF ALLOY 800 IN NaOH AND ETA SOLUTIONS AT 300 ℃. Acta Metall Sin, 2016, 52(5): 599-606.

Download:  HTML  PDF(871KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Many components in secondary side of pressurized water reactors (PWRs) are made of carbon steels and low alloy steels. The corrosion products produced by the flow accelerated corrosion (FAC) of these components can deposite on the surface of steam generator (SG) tubes and decrease the heat transfer efficiency of SG tubes. Moreover, the enrichment of foreign ions (e.g. Cl- and Pb2+) occurs with the sedimentation of corrosion products and causes the local environment degradation, and thus accelerates the failure of SG tubes. In order to decrease the FAC of carbon steels and low alloy steels, pH controllers are often added to adjust the pH value of secondary water. The water chemistry environment of secondary side in PWRs has experienced various treatment techniques, such as phosphate treatment, all volatile treatment (AVT), morpholine (MPH) treatment, ethanolamine (ETA) treatment, and boric acid treatment. In comparision with AVT, ETA can significantly reduce the concentration of Fe in the steam-water phase region and water supply system because of its higher alkalinity and lower molar concentration in feedwater. Due to the high resistance to corrosion and stress corrosion cracking in high temperature and high pressure water, alloy 800 is often used as steam generator tubes in nuclear power plants and thus becomes increasingly attractive among researchers. However, few studies focus on the effect of ETA on the corrosion behavior of alloy 800 in high temperature and high pressure water. This work mainly aims to investigate the corrosion behavior of alloy 800 in NaOH and ETA solutions at 300 ℃ by potentiodynamic polarization curve, electrochemical impedance spectra (EIS), SEM and XPS. The electrochemical results demonstrate that the addition of ETA decreases the current density of anodic and cathodic reactions, and increases the corrosion potential of alloy 800. Besides, ETA addition significantly increases the resistance of inner oxide layer and makes the oxide film more compact, which increases the film resistance of alloy 800 in high temperature water. Through the morphology observation and composition analysis, it is found that ETA addition can promote the formation of Cr-rich layer and increase the ratio of chromium in the oxide films although the deposition of magnetite is enhanced on the surface of alloy 800. For stainless steels and nickel-based alloys in high temperature water, the Cr-rich oxide layer can inhibit the diffusion process of O and metal ions, and reduces the corrosion rates of alloys. Therefore, the corrosion resistance of alloy 800 is enhanced after ETA is added in high temperature water.

Key words:  alloy 800      ethanolamine      potentiodynanic polarization curve      oxide film     
Received:  19 September 2015     
Fund: Supported by National Key Science and Technology Project of China (No.2011ZX06004-009) and National Basic Research Program of China (No.2011CB610500)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00490     OR     https://www.ams.org.cn/EN/Y2016/V52/I5/599

Fig.1  Potentiodynamic polarization curves of alloy 800 after immersed in NaOH and ETA solutions for 96 h at 300 ℃
Fig.2  Bode (a, b) and Nyquist (c) diagrams of alloy 800 after immersed in NaOH and ETA solutions for 96 h at 300 ℃ (|Z|—impedance modulus, Zre—real part of impedance, Zim—imaginative part of impedance)
Solution Rs R1 CPE1 n1 CPE2 n2 R2
kΩcm2 kΩcm2 mSs-ncm-2 mSs-ncm-2 kΩcm2
NaOH 11.95 1.71 0.277 0.72 0.995 0.48 17.78
ETA 15.55 2.15 0.267 0.70 0.862 0.53 26.59
Table 1  EIS fitting results for alloy 800 after immersed in NaOH and ETA solutions for 96 h at 300 ℃
Fig.3  Equivalent circuit for fitting EIS data (Rs—solution resistance, CPE1—duplex layer capacitance and outer oxide layer capacitance, R1—resistance of outer oxide layer, CPE2—capacitance of inner oxide layer, R2—resistance of inner oxide layer)
Fig.4  SEM images of oxide film surfaces for alloy 800 after immersed in NaOH (a) and ETA (b) solutions for 96 h at 300 ℃
Fig.5  XPS depth profiles of Cr, Fe, Ni and O for oxide films on alloy 800 after immersed in NaOH (a) and ETA (b) solutions for 96 h at 300 ℃
Fig.6  XPS spectra of oxide films in alloy 800 after immersed in NaOH solution for 96 h at 300 ℃ for Cr2p3/2 (a1~a4), Fe2p3/2 (b1~b4), Ni2p3/2 (c1~c4) and O1s (d1~d4) at sputtering times of 0 s (a1~d1), 10 s (a2~d2), 60 s (a3~d3) and 210 s (a4~d4)
Fig.7  XPS spectra of oxide films in alloy 800 after immersed in ETA solution for 96 h at 300 ℃ for Cr2p3/2 (a1~a4), Fe2p3/2 (b1~b4), Ni2p3/2 (c1~c4) and O1s (d1~d4) at sputtering times of 0 s (a1~d1), 10 s (a2~d2), 60 s (a3~d3) and 210 s (a4~d4)
Fig.8  Atomic ratio of O2-/OH- in oxide films of alloy 800 after immersed in NaOH and ETA solutions for 96 h at 300 ℃
Fig.9  Distributions of different Cr compositions in oxide films of alloy 800 after immersed in NaOH (a) and ETA (b) solutions for 96 h at 300 ℃
[1] Staehle R W, Gorman J A.Corrosion, 2003; 59: 931
[2] Li X H.PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2012
[2] (郦晓慧. 中国科学院金属研究所博士学位论文, 沈阳, 2012)
[3] Pandey M D, Datla S, Tapping R L, Lu Y C.Nucl Eng Des, 2009; 239: 1862
[4] Sui G, Titchmarsh J M, Heys G B, Congleton J.Corros Sci, 1997; 39: 565
[5] Ziemniak S E, Guilmette P A, Turcotte R A, Tunison H M.Corros Sci, 2008; 50: 449
[6] Le Canut J M, Maximovitch S, Dalard F. J Nucl Mater, 2004; 334: 13
[7] Wang J Q, Li X H, Huang F, Zhang Z M, Wang J Z, Staehle R W.Corrosion, 2014; 70: 598
[8] Huang F, Wang J Q, Han E-H, Ke W.Corros Sci, 2013; 76: 52
[9] Staehle R W, Gorman J A.Corrosion, 2004; 60: 115
[10] Staehle R W, Gorman J A.Corrosion, 2004; 60: 5
[11] Shutikov A V, Ivanov V N, Tyapkov V F, Yerpylyova S F, Bykova V V.Therm Eng, 2008; 55: 402
[12] Tao J. Master Thesis, Shanghai Jiaotong University, 2005
[12] (陶钧. 上海交通大学硕士学位论文, 2005)
[13] Li Q. Master Thesis, Harbin Engineering University, 2005
[13] (李强. 哈尔滨工程大学硕士学位论文, 2005)
[14] Zhu Z P, Zhao Y F, Zhou Y, Guo X C, Deng Y P.Corros Sci Prot Technol, 2012; 24: 285
[14] (朱志平, 赵永福, 周瑜, 郭小翠, 邓奕鹏. 腐蚀科学与防护技术, 2012; 24: 285)
[15] Wang J Z, Wang J Q.J Mater Sci Technol, 2015; 31: 1039
[16] Macdonald D D, Scott A C, Wentrcek P. J Electrochem Soc, 1979; 126: 908
[17] Jonscher A K.Phys Status Solidi, 1975; 32A: 665
[18] Liu X H, Wu X Q, Han E-H.Acta Metall Sin, 2014; 50: 64
[18] (刘侠和, 吴欣强, 韩恩厚. 金属学报, 2014; 50: 64)
[19] Bénézeth P, Wesolowski D, Palmer D, Machesky M.J Solution Chem, 2009; 38: 925
[20] Turner C W, Klimas S J.Reprot, TR-108004, Palo Alto: EPRI, 1997
[21] Turner C W, Guzonas D D, Klimas S J.Reprot, TR-110083, Palo Alto: EPRI, 1999
[22] Sui G, Titchmarsh J M, Heys G B, Congleton J.Corros Sci, 1997; 39: 565
[23] Machet A, Galtayries A, Marcus P, Combrade P, Jolivet P, Scott P.Surf Interface Anal, 2002; 34: 197
[24] Robertson J.Corros Sci, 1991; 32: 443
[25] Dieckmann R, Mason T O, Hodge J D, Schmalzried H.Ber Bunsenges Physik Chem, 1978; 82: 778
[26] Dieckmann R.Solid State Ionics, 1984; 12: 1
[27] Calinski C, Strehblow H H.J Electrochem Soc, 1989; 136: 1328
[28] Zhang Z M, Wang J Q, Han E-H, Ke W.Corros Sci, 2011; 53: 3623
[29] Huang F, Wang J Q, Han E-H, Ke W.J Mater Sci Technol, 2012; 28: 562
[30] Machet A, Galtayries A, Zanna S, Klein L, Maurice V, Jolivet P, Foucault M, Combrade P, Scott P, Marcus P.Electrochim Acta, 2004; 49: 3957
[31] Biesinger M C, Brown C, Mycroft J R, Davidson R D, McIntyre N S.Surf Interface Anal, 2004; 36: 1550
[32] Pratt A R, McIntyre N S.Surf Interface Anal, 1996; 24: 529
[33] Sun H, Wu X Q, Han E-H.Corros Sci, 2009; 51: 2840
[34] Sun H, Wu X Q, Han E-H.Corros Sci, 2009; 51: 2565
[35] Huang J B, Wu X Q, Han E-H.Corros Sci, 2010; 52: 3444
[36] Liu X H, Wu X Q, Han E-H.Corros Sci, 2011; 53: 3337
[37] Stellwag B.Corros Sci, 1998; 40: 337
[1] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[2] SHEN Zhao, WANG Zhipeng, HU Bo, LI Dejiang, ZENG Xiaoqin, DING Wenjiang. Research Progress on the Mechanisms Controlling High-Temperature Oxidation Resistance of Mg Alloys[J]. 金属学报, 2023, 59(3): 371-386.
[3] LIU Laidi, DING Biao, REN Weili, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Multilayer Structure of DZ445 Ni-Based Superalloy Formed by Long Time Oxidation at High Temperature[J]. 金属学报, 2023, 59(3): 387-398.
[4] SUN Rongrong, YAO Meiyi, LIN Xiaodong, ZHANG Wenhuai, QIU Yunlong, HU Lijuan, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. Effect of Ti on the Corrosion Behavior of Fe22Cr5Al3Mo Alloy in 500oC Superheated Steam[J]. 金属学报, 2022, 58(5): 610-622.
[5] LIN Xiaodong, MA Haibin, REN Qisen, SUN Rongrong, ZHANG Wenhuai, HU Lijuan, LIANG Xue, LI Yifeng, YAO Meiyi. Corrosion Behaviors of Fe13Cr5Al4Mo Alloy in High-Temperature High-Pressure Water Environments[J]. 金属学报, 2022, 58(12): 1611-1622.
[6] QIAN Yue,SUN Rongrong,ZHANG Wenhuai,YAO Meiyi,ZHANG Jinlong,ZHOU Bangxin,QIU Yunlong,YANG Jian,CHENG Guoguang,DONG Jianxin. Effect of Nb on Microstructure and Corrosion Resistance of Fe22Cr5Al3Mo Alloy[J]. 金属学报, 2020, 56(3): 321-332.
[7] Xiaoyi ZHANG, Hailong SHANG, Bingyang MA, Rongbin LI, Geyang LI. Brazing of Coated Al Foil Filler to AlN Ceramic[J]. 金属学报, 2018, 54(4): 575-580.
[8] Dahai XIA, Shizhe SONG, Jianqiu WANG, Jingli LUO. Research Progress on Sulfur-Induced Corrosion of Alloys 690 and 800 in High Temperature and High Pressure Water[J]. 金属学报, 2017, 53(12): 1541-1554.
[9] Zhongbo YANG,Wenjin ZHAO,Zhuqing CHENG,Jun QIU,Hai ZHANG,Hong ZHUO. Effect of Nb Content on the Corrosion Resistance of Zr-xNb-0.4Sn-0.3Fe Alloys[J]. 金属学报, 2017, 53(1): 47-56.
[10] Meiqiong OU,Yang LIU,Xiangdong ZHA,Yingche MA,Leming CHENG,Kui LIU. CORROSION BEHAVIOR OF A NEW NICKEL BASE ALLOY IN SUPERCRITICAL WATERCONTAINING DIVERSE IONS[J]. 金属学报, 2016, 52(12): 1557-1564.
[11] Jianqiu WANG, Fa HUANG, Wei KE. CORROSION BEHAVIORS OF INCONEL 690TT AND INCOLOY 800MA STEAM GENERATOR TUBES IN HIGH TEMPERATURE HIGH PRESSURE WATER[J]. 金属学报, 2016, 52(10): 1333-1344.
[12] ZHANG Zhiming, WANG Jianqiu, HAN En-Hou, KE Wei. ANALYSIS OF SURFACE OXIDE FILM FORMED ON ELETROPOLISHED ALLOY 690TT IN HIGH TEMPERATURE AND HIGH PRESSURE WATER WITH SEQUENTIALLY DISSOLVED HYDROGEN AND OXYGEN[J]. 金属学报, 2015, 51(1): 85-92.
[13] ZHANG Haixia, LI Zhongkui, ZHOU Lian, XU Bingshe, WANG Yongzhen. EFFECTS OF STRUCTURE AND INTERNAL STRESSES IN OXIDE FILMS ON CORROSION MECHANISM OF NEW ZIRCONIUM ALLOY[J]. 金属学报, 2014, 50(12): 1529-1537.
[14] LIU Xiahe, WU Xinqiang, HAN En-hou. EFFECTS OF TEMPERATURE ON LECTROCHEMICAL CORROSION OF DOMESTIC NUCLEAR-GRADE 316L STAINLESS STEEL IN Zn-INJECTED AQUEOUS ENVIRONMENT[J]. 金属学报, 2014, 50(1): 64-70.
[15] CAO Yu, DI Hongshuang, ZHANG Jingqi, MA Tianjun, ZHANG Jiecen. RESEARCH ON HOT DEFORMATION BEHAVIOR AND HOT WORKABILITY OF ALLOY 800H[J]. 金属学报, 2013, 49(7): 811-821.
No Suggested Reading articles found!