Please wait a minute...
Acta Metall Sin  2017, Vol. 53 Issue (1): 47-56    DOI: 10.11900/0412.1961.2016.00136
Orginal Article Current Issue | Archive | Adv Search |
Effect of Nb Content on the Corrosion Resistance of Zr-xNb-0.4Sn-0.3Fe Alloys
Zhongbo YANG,Wenjin ZHAO(),Zhuqing CHENG,Jun QIU,Hai ZHANG,Hong ZHUO
Reactor Fuel and Material Key Laboratory, Nuclear Power Institute of China, Chengdu 610213, China
Cite this article: 

Zhongbo YANG,Wenjin ZHAO,Zhuqing CHENG,Jun QIU,Hai ZHANG,Hong ZHUO. Effect of Nb Content on the Corrosion Resistance of Zr-xNb-0.4Sn-0.3Fe Alloys. Acta Metall Sin, 2017, 53(1): 47-56.

Download:  HTML  PDF(6836KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Zr-Sn-Nb-Fe alloy is one of the high performance zirconium alloys used as the fuel cladding materials for high burnup fuel elements. The corrosion behavior of zirconium alloys were affected by the alloying element, the microstructure and fabricating process. To better understand the effect of Nb on the corrosion behavior of Zr-Sn-Nb-Fe alloy, Zr-xNb-0.4Sn-0.3Fe (x=0~1, mass fraction, %) sheets were prepared by thermo-mechanical processing and tested in static autoclave in 360 ℃, 18.6 MPa pure water, 360 ℃, 18.6 MPa, 0.01 mol/L LiOH aqueous solution, and 400 ℃, 10.3 MPa superheat steam. The characteristics of the microstructure were analyzed by TEM and SEM. It was shown that the corrosion weight gain of specimens was increased when x increaseed from 0 to 1 in pure water and steam. However, it was found that the corrosion weight gain reduced in LiOH aqueous solution as Nb content was increased. The microstructural characteristic indicated the addition of Nb has the effect of refining recrystallization grain of Zr-xNb-0.4Sn-0.3Fe alloy. The mean size of the precipitates in alloy were almost the same even though the Nb was considerably changed, but the area fraction of precipitates and mass ratio of Nb/Fe in precipitates of alloy were increased with the Nb content increasing when all the samples heat-treated in the same condition. The ZrFe or ZrNbFe precipitate of including small amounts of Nb was mainly formed when x was 0.2 or less, and the ZrNbFe precipitate was mainly found when the content of Nb was higher. With the increasing of corrosion rate, there are more cracks in the fracture surface of the oxide films and the size of “Cauliflower-like” structure grows bigger. It was concluded that the contents of Nb in ZrNbFe precipitates will be responsible for the difference of corrosion resistance for Zr-xNb-0.4Sn-0.3Fe alloy.

Key words:  Zr-xNb-0.4Sn-0.3Fe alloy,      corrosion,      microstructure,      oxide film     
Received:  13 April 2016     
Fund: Supported by Specialized Research Foundation from China National Nuclear Corporation (No.[2014]114)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00136     OR     https://www.ams.org.cn/EN/Y2017/V53/I1/47

Alloy Nb Sn Fe O N Zr
Zr-0Nb-0.4Sn-0.3Fe - 0.38 0.29 0.08 <0.006 Bal.
Zr-0.2Nb-0.4Sn-0.3Fe 0.18 0.41 0.30 0.08 <0.006 Bal.
Zr-0.3Nb-0.4Sn-0.3Fe 0.28 0.41 0.31 0.08 <0.006 Bal.
Zr-0.65Nb-0.4Sn-0.3Fe 0.63 0.42 0.29 0.08 <0.006 Bal.
Zr-1Nb-0.4Sn-0.3Fe 0.99 0.43 0.29 0.08 <0.006 Bal.
Table 1  Chemical compositions of alloys

(mass fraction / %)

Fig.1  Corrosion kinetics curves of Zr-xNb-0.4Sn-0.3Fe (x=0~1, mass fraction, %) alloys corroded in different corrosive mediums

(a) 360 ℃,18.6 MPa pure water

(b) 400 ℃,10.3 MPa superheat steam

(c) 360 ℃,18.6 MPa,0.01 mol/L LiOH aqueous solution

Fig.2  (a) x=0 (b) x=0.3 (c) x=0.65 (d) x=1
Fig.3  Statistical results of precipitate characteristics of Zr-xNb-0.4Sn-0.3Fe alloys

(a) x=0 (b) x=0.3 (c) x=0.65 (d) x=1

Fig.4  Variation of Nb content with Fe content for the same precipitates of Zr-xNb-0.4Sn-0.3Fe alloys

(a) x=0.2 (b) x=0.3 (c) x=0.65 (d) x=1

Fig.5  Oxide film fracture micrographs of Zr-xNb-0.4Sn-0.3Fe alloys corroded in pure water for 340 d

(a, a1) x=0 (b, b1) x=1

Fig.6  Oxide film fracture micrographs of Zr-xNb-0.4Sn-0.3Fe alloys corroded in superheat steam for different times

(a, a1) x=0, 250 d (b, b1) x=0, 340 d (c, c1) x=0.3, 340 d (d, d1) x=1, 340 d

Fig.7  Oxide film fracture micrographs of Zr-xNb-0.4Sn-0.3Fe alloys corroded in LiOH aqueous solution for different times

(a) x=0, 70 d (b) x=0.65, 250 d (c, c1) x=0, 100 d (d, d1) x=0.65, 280 d (e, e1) x=0.65, 310 d

Fig.8  Micrographs at the oxide film/substrate interface of Zr-xNb-0.4Sn-0.3Fe alloys corroded in different corrosive mediums

(a) x=0, corroded in 360 ℃, 18.6 MPa pure water for 340 d (54 mg/dm2)

(b) x=0, corroded in 400 ℃, 10.3 MPa superheat steam for 340 d (140 mg/dm2)

(c) x=0, corroded in 360 ℃, 18.6 MPa, 0.01 mol/L LiOH aqueous solution for 100 d (414 mg/dm2 )

(d) x=1, corroded in 360 ℃, 18.6 MPa pure water for 100 d (72 mg/dm2 )

(e) x=0.65, corroded in 400 ℃, 10.3 MPa superheat steam for 340 d (271 mg/dm2 )

(f) x=0.65, corroded in 360 ℃, 18.6 MPa, 0.01 mol/L LiOH aqueous solution for 310 d (989 mg/dm2 )

[1] Xie X F, Zhang J L, Zhu L, et al.Study on the corrosion resistance of Zr-0.7Sn-0.35Nb-0.3Fe-xGe alloy in lithiated water at high temperature under high pressure[J]. Acta Metall. Sin., 2012, 48: 1487
[1] (谢兴飞, 张金龙, 朱莉等. Zr-0.7Sn-0.35Nb-0.3Fe-xGe合金在高温高压LiOH水溶液中耐腐蚀性能的研究[J]. 金属学报, 2012, 48: 1487)
[2] Pan G, Garde A M, Atwood A R.Performance and property evaluation of high-burnup optimized ZIRLOTM cladding [A]. Zirconium in the Nuclear Industry: 17th International Symposium[C]. West Conshohocken, PA: ASTM International, 2015: 607
[3] Shishov V N, Markelov V A, Nikulina A V, et al.Corrosion, dimensional stability and microstructure of VVER-1000 E635 alloy FA components at burnups up to 72 MW day/kgU [A]. Zirconium in the Nuclear Industry: 17th International Symposium[C]. West Conshohocken, PA: ASTM International, 2015: 628
[4] Zhou B X, Yao M Y, Li Z K, et al.Optimization of N18 zirconium alloy for fuel cladding of water reactors[J]. J. Mater. Sci. Technol., 2012, 28: 606
[5] Garde A M, Comstock R J, Pan G, et al.Advanced zirconium alloy for PWR application [A]. Zirconium in the Nuclear Industry: 16th International Symposium[C]. West Conshohocken, PA: ASTM International, 2011: 784
[6] Kim H G, Jeong Y H, Kim T H.Effect of isothermal annealing on the corrosion behavior of Zr-xNb alloys[J]. J. Nucl. Mater., 2004, 326: 125
[7] Kim H G, Park J Y, Jeong Y H.Ex-reactor corrosion and oxide characteristics of Zr-Nb-Fe alloys with the Nb/Fe ratio[J]. J. Nucl. Mater., 2005, 345: 1
[8] Wei J, Frankel P, Polatidis E, et al.The effect of Sn on autoclave corrosion performance and corrosion mechanisms in Zr-Sn-Nb alloys[J]. Acta Mater., 2013, 61: 4200
[9] Müller S, Lanzani L.Corrosion of Zr-1Nb and Zr-2.5Nb in 0.1 M LiOH at 343 ℃[J]. Proc. Mater. Sci., 2015, 8: 46
[10] Zhang H X, Li Z K, Zhou L, et al.Effects of structure and internal stresses in oxide films on corrosion mechanism of new zirconium alloy[J]. Acta Metall. Sin., 2014, 50: 1529
[10] (章海霞, 李中奎, 周廉等. 氧化膜结构及内应力对新锆合金腐蚀机理的影响[J]. 金属学报, 2014, 50: 1529)
[11] Wei T G, Long C S, Miao Z, et al.Corrosion behavior of Zr-0.4Fe-1.0Cr-xMo alloys in 500 ℃ and 10.3 MPa steam[J]. Acta Metall. Sin., 2013, 49: 717(韦天国, 龙冲生, 苗志等. Zr-0.4Fe-1.0Cr-xMo合金在500 ℃和10.3 MPa水蒸汽中的腐蚀行为 [J]. 金属学报, 2013, 49: 717)
[12] Platt P, Frankel P, Gass M, el al. Critical assessment of finite element analysis applied to metal-oxide interface roughness in oxidising zirconium alloys[J]. J. Nucl. Mater., 2015, 464: 313
[13] Platt P, Polatidis E, Frankel P, et al.A study into stress relaxation in oxides formed on zirconium alloys[J]. J. Nucl. Mater., 2015, 456: 415
[14] Shishov V N.The evolution of microstructure and deformation stability in Zr-Nb-(Sn, Fe) alloys under neutron irradiation [A]. Zirconium in the Nuclear Industry: 16th International Symposium[C]. West Conshohocken, PA: ASTM International, 2011: 37
[15] Garner A, Gholinia A, Frankel P, et al.The microstructure and microtexture of zirconium oxide films studied by transmission electron backscatter diffraction and automated crystal orientation mapping with transmission electron microscopy[J]. Acta Mater., 2014, 80: 159
[16] Yang Z B, Zhao W J, Miao Z, et al.Corrosion behavior of Zr-XSn-1Nb-0.3Fe(X=0~1.5) alloys[J]. Rare Met. Mater. Eng., 2015, 44: 1129
[16] (杨忠波, 赵文金, 苗志等. Zr-XSn-1Nb-0.3Fe(X=0~1.5)合金的腐蚀行为研究[J]. 稀有金属材料与工程, 2015, 44: 1129)
[17] Guo X C, Luan B F, Chen J W, et al.Distribution characteristics of precipitation of N18 zirconium alloy[J]. Rare Met. Mater. Eng., 2011, 40: 813
[17] (过锡川, 栾佰峰, 陈建伟等. N18锆合金沉淀相分布特征的研究[J]. 稀有金属材料与工程, 2011, 40: 813)
[18] Preuss M, Frankel P, Lozano-Perez S, et al.Studies regarding corrosion mechanisms in zirconium alloys [A]. Zirconium in the Nuclear Industry: 16th International Symposium[C]. West Conshohocken, PA: ASTM International, 2011: 649
[19] Li S L, Yao M Y, Zhang X, et al.Effect of adding Cu on the corrosion resistance of M5 alloy in superheated steam at 500 ℃[J]. Acta Metall. Sin., 2011, 47: 163
[19] (李士炉, 姚美意, 张欣等. 添加Cu对M5合金在500 ℃过热蒸汽中耐腐蚀性能的影响[J]. 金属学报, 2011, 47: 163)
[20] Mardon J P, Charquet D, Senevat J.Influence of composition and fabrication process on out-of-pile and in-pile properties of M5 alloy [A]. Zirconium in the Nuclear Industry: 12th International Symposium[C]. West Conshohocken, PA: ASTM International, 2000: 505
[21] Couet A, Motta A T, Comstock R J.Effect of alloying elements on hydrogen pickup in zirconium alloys [A]. Zirconium in the Nuclear Industry: 17th International Symposium[C]. West Conshohocken, PA: ASTM International, 2015: 479
[22] Chabretou V, Hoffmann P B, Trapp-Pritsching S, et al.Ultra low tin quaternary alloys PWR performance-impact of tin content on corrosion resistance, irradiation growth, and mechanical properties [A]. Zirconium in the Nuclear Industry: 16th International Symposium[C]. West Conshohocken, PA: ASTM International, 2011: 801
[23] Wikmark G, Rudling P, Lehtinen B, et al.The importance of oxide morphology for the oxidation rate of zirconium alloys [A]. Zirconium in the Nuclear Industry: 11th International Symposium[C]. West Conshohocken, PA: ASTM International, 1996: 55
[24] Yao M Y, Wang J H, Peng J C, et al.Study on the role of second phase particles in hydrogen uptake behavior of zirconium alloys [A]. Zirconium in the Nuclear Industry: 16th International Symposium[C]. West Conshohocken, PA: ASTM International, 2011: 466
[25] Zhang W P, Yao M Y, Zhu L, et al.Corrosion behavior of Zr-0.8Sn-0.35Nb-0.4Fe-0.1Cr-xBi alloys in superheated steam at 400 ℃/10.3 MPa[J]. Corros. Prot., 2013, 34: 463
[25] (张伟鹏, 姚美意, 朱莉等. Zr-0.8Sn-0.35Nb-0.4Fe-0.1Cr-xBi合金在400 ℃过热蒸汽中的腐蚀行为[J]. 腐蚀与防护, 2013, 34: 463)
[26] Yao M Y, Zhang Y, Li S L, et al.Effect of Cu content on the corrosion resistance of Zr-0.80Sn-0.34Nb-0.39Fe-0.10Cr-xCu alloy in superheated steam at 500 ℃[J]. Acta Metall. Sin., 2011, 47: 872
[26] (姚美意, 张宇, 李士炉等. Cu含量对Zr-0.80Sn-0.34Nb-0.39Fe-0.10Cr-xCu合金在500 ℃过热蒸汽中耐腐蚀性能的影响[J]. 金属学报, 2011, 47: 872)
[27] Frankel P G, Wei J, Fruncis E M, et al.Effect of Sn on corrosion mechanisms in advanced Zr-cladding for pressurised water reactors [A]. Zirconium in the Nuclear Industry: 17th International Symposium[C]. West Conshohocken. PA: ASTM International, 2015: 404
[28] Platt P, Frankel P, Gass M, et al.Finite element analysis of the tetragonal to monoclinic phase transformation during oxidation of zirconium alloys[J]. J. Nucl. Mater., 2014, 454: 290
[29] Yan K P, Chen K M.The Processing Equipment Corrosion and Protection [M]. 2nd Ed., Beijing: Chemical Industry Press, 2009: 48
[29] (闫康平, 陈匡民. 过程装备腐蚀与防护 [M]. 第二版. 北京: 化学工业出版社, 2009: 48)
[30] Zhang J L, Xie X F, Yao M Y, et al.Effect of Ge addition on corrosion performance of Zr-4 alloy in lithiated solution[J]. Chin. J. Nonferrous Met., 2013, 23: 1542
[30] (张金龙, 谢兴飞, 姚美意等. Ge含量对Zr-4合金在LiOH水溶液中耐腐蚀性能的影响[J]. 中国有色金属学报, 2013, 23: 1542)
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[9] ZHANG Qiliang, WANG Yuchao, LI Guangda, LI Xianjun, HUANG Yi, XU Yunze. Erosion-Corrosion Performance of EH36 Steel Under Sand Impacts of Different Particle Sizes[J]. 金属学报, 2023, 59(7): 893-904.
[10] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[11] LI Xiaohan, CAO Gongwang, GUO Mingxiao, PENG Yunchao, MA Kaijun, WANG Zhenyao. Initial Corrosion Behavior of Carbon Steel Q235, Pipeline Steel L415, and Pressure Vessel Steel 16MnNi Under High Humidity and High Irradiation Coastal-Industrial Atmosphere in Zhanjiang[J]. 金属学报, 2023, 59(7): 884-892.
[12] ZHAO Pingping, SONG Yingwei, DONG Kaihui, HAN En-Hou. Synergistic Effect Mechanism of Different Ions on the Electrochemical Corrosion Behavior of TC4 Titanium Alloy[J]. 金属学报, 2023, 59(7): 939-946.
[13] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[14] CHEN Runnong, LI Zhaodong, CAO Yanguang, ZHANG Qifu, LI Xiaogang. Initial Corrosion Behavior and Local Corrosion Origin of 9%Cr Alloy Steel in ClContaining Environment[J]. 金属学报, 2023, 59(7): 926-938.
[15] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
No Suggested Reading articles found!