Please wait a minute...
Acta Metall Sin  2020, Vol. 56 Issue (3): 321-332    DOI: 10.11900/0412.1961.2019.00276
Current Issue | Archive | Adv Search |
Effect of Nb on Microstructure and Corrosion Resistance of Fe22Cr5Al3Mo Alloy
QIAN Yue1,SUN Rongrong1,ZHANG Wenhuai1,YAO Meiyi1(),ZHANG Jinlong1,ZHOU Bangxin1,QIU Yunlong2,YANG Jian3,CHENG Guoguang4,DONG Jianxin5
1. Institute of Materials, Shanghai University, Shanghai 200072, China
2. Zhongxing Energy Equipment Co. , Ltd. , Haimen 226126, China
3. State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
4. State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China
5. School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
Download:  HTML  PDF(30332KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Fe-Cr-Al alloy is a promising candidate accident tolerant fuel (ATF) cladding material. It is helpful to developing Fe-Cr-Al alloy with excellent corrosion resistance by investigating the effect of chemical composition on its corrosion behavior under the normal condition of simulated nuclear reactor operation. In this work, the effect of Nb content (0.5%, 1.0%, 2.0%, mass fraction) on the corrosion resistance of Fe22Cr5Al3Mo alloys in 500 ℃ and 10.3 MPa superheated steam was investigated by static autoclave tests. The microstructures of the alloys and oxide films formed on the alloys after different exposure time were observed and analyzed by EBSD, TEM, EDS and SEM. The results showed that the second phase particles (SPPs) of Nb(C, N), Fe2(Nb, Mo) and Cr2(Nb, Mo) were precipitated and the grains were finer in the Nb-containing alloys. The corrosion resistance of the alloys was further improved with the increase of Nb content (in the case of Nb≥1.0%). The oxides of Fe, Cr and Al were formed separately in the oxide layer from outside to inside. Compared with the Nb-free alloy, the interfaces of different oxides were clearer and had a more obvious stratification resulting from the oxides with different composition appeared in the oxide film on the alloy with 1.0%Nb. The thickness of oxide film on the alloy with 1.0%Nb was more uniform than that on the alloy without Nb. At the oxide film and metal matrix interface, the alumina layer on the Nb-free alloy was dispersive, and the alumina particles were detected in both the matrix and chromium oxide scale, which illustrated the internal oxidation of aluminum occurred. While the alumina layer on the alloy with 1.0%Nb was more uniform and continuous. This indicated that the addition of Nb inhibited the internal oxidation of aluminum, and promoted the formation of uniform and continuous alumina layer, therefore reduced the oxidation rate of the alloy.

Key words:  Fe-Cr-Al alloy      Nb      microstructure      corrosion      oxide film     
Received:  19 August 2019     
ZTFLH:  TG142.1  
Fund: National Natural Science Foundation of China(51871141)
Corresponding Authors:  Meiyi YAO     E-mail:  yaomeiyi@shu.edu.cn

Cite this article: 

QIAN Yue,SUN Rongrong,ZHANG Wenhuai,YAO Meiyi,ZHANG Jinlong,ZHOU Bangxin,QIU Yunlong,YANG Jian,CHENG Guoguang,DONG Jianxin. Effect of Nb on Microstructure and Corrosion Resistance of Fe22Cr5Al3Mo Alloy. Acta Metall Sin, 2020, 56(3): 321-332.

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2019.00276     OR     https://www.ams.org.cn/EN/Y2020/V56/I3/321

AlloyCrAlMoNbCNFe
0Nb22.905.253.640.030.0320.0089Bal.
0.5Nb22.455.173.520.470.0250.0047Bal.
1.0Nb22.895.293.730.980.0220.0039Bal.
2.0Nb23.395.373.841.960.0360.0082Bal.
Table 1  Chemical compositions of the Fe22Cr5Al3Mo-xNb alloys (mass fraction / %)
Fig.1  XRD spectra of Fe22Cr5Al3Mo-xNb alloys
Fig.2  EBSD images of grain boundaries of Fe22Cr5Al3Mo-xNb alloysColor online(a) 0Nb (b) 0.5Nb (c) 1.0Nb (d) 2.0Nb
Alloy(110)(200)(211)ā / nm
θ / (°)d / nmθ / (°)d / nmθ / (°)d / nm
0Nb44.480.2035264.790.1437782.190.117190.28747
0.5Nb44.450.2036564.790.1437782.130.117250.28758
1.0Nb44.450.2036564.580.1441982.130.117250.28786
2.0Nb44.240.2045664.310.1447381.410.118110.28935
Table 2  XRD characteristic peak parameters (θ, d) and average lattice constant (ā) of Fe22Cr5Al3Mo-xNb alloy
Fig.3  TEM bright field images of the second phase particles (SPPs) of 0.5Nb (a1), 0Nb (a2, a3), 1.0Nb (a4) and 2.0Nb (a5, a6), and SAED patterns (b1~b5) and EDS results (c1~c5) corresponding to the P1~P5 typical SPPs respectively in Fe22Cr5Al3Mo-xNb alloys
Alloyhcp-Fe2Nbhcp-Cr2Nbfcc-Cr23C6o-Fe3Cfcc-Nb(C, N)
0Nb--500~800200-
0.5Nb150~200About 500--About 190
1.0Nb150~800500~750--About 185
2.0Nb300~2000500~800--About 170
Table 3  Size statistics of the typical SPPs in Fe22Cr5Al3Mo-xNb alloys (nm)
Fig.4  Mass gain curves of Fe22Cr5Al3Mo-xNb alloys corroded in 500 ℃, 10.3 MPa superheated steam (a), and the relationship between corrosion mass gain after 1000 h exposure and Nb content (b)
Fig.5  SEM images of oxide films formed on the 0Nb (a1~a3) and 1.0Nb (b1~b3) alloys after corrosion in 500 ℃, 10.3 MPa superheated steam for 3 h (a1, b1), 500 h (a2, b2) and 1000 h (a3, b3)
Fig.6  HAADF images of the cross-sectional oxide films formed on the 0Nb (a, c) and 1.0Nb (b, d) alloys after corrosion in 500 ℃, 10.3 MPa superheated steam for 3 h (a, b) and 500 h (c, d)
Fig.7  HAADF image (a), TEM image and SAED patterns (insets) (b), EDS line scans corresponding line 1 in Fig.7a (c) and EDS plane scans (d) of the cross-sectional oxide film formed on 0Nb alloy after 3 h corrosion in 500 ℃, 10.3 MPa superheated steam (O/M—oxide film/metal)Color online
Fig.8  HAADF image (a), TEM image and SAED patterns (insets) (b), EDS line scans corresponding line 2 in Fig.8a (c) and EDS plane scans (d) of the cross-sectional oxide film formed on 1.0Nb alloy after 3 h corrosion in 500 ℃, 10.3 MPa superheated steamColor online
Fig.9  HAADF image (a), TEM image and SAED patterns (insets) (b), EDS line scans corresponding Line 3 in Fig.9a (c) and EDS plane scans (d) of the cross-sectional oxide film formed on 0Nb alloy after 500 h corrosion in 500 ℃, 10.3 MPa superheated steamColor online
Fig.10  HAADF image (a), TEM image and SAED patterns (insets) (b), EDS line scans corresponding line 4 in Fig.10a (c) and EDS plane scans (d) of the cross-sectional oxide film formed on 1.0Nb alloy after 500 h corrosion in 500 ℃, 10.3 MPa superheated steamColor online
[1] Zinkle S J, Terrani K A, Gehin J C, et al. Accident tolerant fuels for LWRs: A perspective [J]. J. Nucl. Mater., 2014, 448: 374
[2] Ott L J, Robb K R, Wang D. Preliminary assessment of accident-tolerant fuels on LWR performance during normal operation and under DB and BDB accident conditions [J]. J. Nucl. Mater., 2014, 448: 520
[3] Terrani K A, Zinkle S J, Snead L L. Advanced oxidation-resistant iron-based alloys for LWR fuel cladding [J]. J. Nucl. Mater. , 2014, 448: 420
[4] Goldner F. Development strategy for advanced LWR fuels with enhanced accident tolerance [R]. Germantown: U.S. Department of Energy, 2012
[5] Ni D Y, Li M C, Wu W B, et al. Neutron penalty and advantage analysis of candidate accident-tolerant cladding materials in PWRs [J]. Nucl. Power Eng., 2015, 36(S2): 14
[5] 倪东洋, 李满仓, 吴文斌等. 压水堆候选耐事故包壳材料的中子经济性分析 [J]. 核动力工程, 2015, 36(S2): 14
[6] Chu R. Studies on high-temperature oxidation and its influence mechanism of Fe-Cr-Al alloy [D]. Shenyang: Shenyang Normal University, 2013
[6] 褚 冉. Fe-Cr-Al合金高温氧化及影响机理研究 [D]. 沈阳: 沈阳师范大学, 2013
[7] Quadakkers W J, Naumenko D, Wessel E, et al. Growth rates of alumina scales on Fe-Cr-Al alloys [J]. Oxid. Met., 2004, 61:17
[8] Bo J, Roger B, Jonas M, et al. High temperature properties of a new powder metallurgical FeCrAl alloy [J]. Mater. Sci. Forum, 2004, 461-464: 455
[9] Zhang Z G, Niu Y, Zhang X J. Effect of third element Cr in Fe-Cr-Al alloys [J]. J. Iron Steel Res., 2007, 19(7): 46
[9] 张志刚, 牛 焱, 张学军. 铁-铬-铝合金中铬的第三组元作用 [J]. 钢铁研究学报, 2007, 19(7): 46
[10] Gao J, Li B, Wu S X, et al. Relations between the actions of yttrium inhibiting brittleness and the contents of chromium and yttrium in FeCrAl alloys [J]. Met. Funct. Mater., 1998, 6(1): 29
[10] 高 军, 李 碚, 吴双霞等. 钇抑制FeCrAl合金脆性的作用与合金中铬、钇含量的关系 [J]. 金属功能材料, 1998, 6(1): 29
[11] Sun Z Q, Bei H B, Yukinori Y. Microstructural control of FeCrAl alloys using Mo and Nb additions [J]. Mater. Charact., 2017, 132: 126
[12] Liu J M, Liang J Y. Effect of alloying elements on corrosion resistance of ferritic stainless steel [J]. Shanxi Metall., 2005, 32(4): 9
[12] 刘继明, 梁建宇. 合金元素对铁素体不锈钢抗腐蚀性能的影响 [J]. 山西冶金, 2005, 32(4): 9
[13] Li X, Lu X L, Bi H Y. Effect of Nb, Ti on the properties of 15Cr ferritic stainless steel [A]. Proceedings of the 8th (2011) China Iron and Steel Annual Conference [C]. Beijing: Metallurgical Industry Press, 2012: 1
[13] 李 鑫, 陆晓莉, 毕洪运. Nb、Ti对15Cr铁素体不锈钢性能的影响 [A]. 第八届(2011)中国钢铁年会论文集 [C]. 北京: 冶金工业出版社, 2012: 1
[14] Liu Z B. Effect of Nb on microstructure and properties of 00Crl2Ti ferritic stainless steel [D]. Lanzhou: Lanzhou University of Technology, 2011
[14] 刘兆彬. Nb对00Cr12Ti铁素体不锈钢组织和性能的影响 [D]. 兰州: 兰州理工大学, 2011
[15] Kestens L, Jonas J J. Modelling texture change during the static recrystallization of a cold rolled and annealed ultra low carbon steel previously warm rolled in the ferrite region [J]. ISIJ Int., 1997, 37: 807
[16] Yan H T, Bi H Y, Li X, et al. Influence of Nb on microstructure and mechanical properties of 0Cr11 ferritic stainless steel [J]. Iron Steel, 2009, 44(1): 59
[16] 颜海涛, 毕洪运, 李 鑫等. Nb对0Cr11铁素体不锈钢组织和性能的影响 [J]. 钢铁, 2009, 44(1): 59
[17] Fujita N, Ohmura K, Yamamoto A. Changes of microstructures and high temperature properties during high temperature service of Niobium added ferritic stainless steels [J]. Mater. Sci. Eng., 2003, A351: 272
[18] Yamamoto Y, Pint B A, Terrani K A, et al. Development and property evaluation of nuclear grade wrought FeCrAl fuel cladding for light water reactors [J]. J. Nucl. Mater., 2015, 467: 703
[19] Li J. The researches into the grain refinement and corrosion resisting property of the ferritic stainless steel [D]. Chongqing: Chongqing University, 2005
[19] 李 江. 铁素体不锈钢晶粒细化及耐腐蚀性研究 [D]. 重庆: 重庆大学, 2005
[20] Ye F C. Study on surface insulation and oxidation mechanism of FeCrAl electrothermal alloy [D]. Hangzhou: Zhejiang Sci-Tech University, 2010
[20] 叶逢春. 铁铬铝电热合金表面绝缘及抗氧化机理研究 [D]. 杭州: 浙江理工大学, 2010
[21] Lu Y X, Chen W X, Eadie R. The sulfidation/oxidation resistance of Two Ni-Cr-Al-Y alloys at 700 ℃ [J]. Acta Metall. Sin. (Eng. Lett., 2004, 17: 166
[22] Birks N, Meier G H, Pettit F S. Introduction to the High-Temperature Oxidation of Metals [M]. London, UK: Edward Arnold Ltd., 1983: 1
[23] Quadakkers W J, Holzbrecher H, Briefs K G, et al. Differences in growth mechanisms of oxide scales formed on ODS and conventional wrought alloys [J]. Oxid. Met., 1989, 32: 67
[24] Kitaoka S. Mass transfer in polycrystalline alumina under oxygen potential gradients at high temperatures [J]. J. Ceram. Soc. Jpn., 2016, 124: 1100
[25] You P F. Preparation and high temperature performance of NiFe2O4 spinel coating for ferritic stainless steel [D]. Hefei: University of Science and Technology of China, 2018
[25] 游彭飞. SOFC铁素体不锈钢连接体用NiFe2O4基涂层的制备与高温性能 [D]. 合肥: 中国科学技术大学, 2018
[26] Cheng X Y, Wan X J, Shen J N. The effect of Nb on the oxidation behavior of TiAl alloy at high temperature [J]. J. Chin. Soc. Corros. Prot., 2002, 22(2): 69
[26] 程晓英, 万晓景, 沈嘉年. 合金元素Nb在TiAl高温氧化行为中的作用 [J]. 中国腐蚀与防护学报, 2002, 22(2): 69
[27] Zheng H Z, Lu S Q, Wang K L, et al. Effect of phase constitution on oxidation behavior of Cr-Nb alloys [J]. Chin. J. Nonferrous Met., 2008, 18: 2172
[27] 郑海忠, 鲁世强, 王克鲁等. 相组成对Cr-Nb合金高温氧化行为的影响 [J]. 中国有色金属学报, 2008, 18: 2172
[28] Zhang T B, Ding H, Deng Z H, et al. Synergistic effect of Nb and Mo on oxidation behavior of TiAl-based alloys [J]. Rare Met. Mater. Eng., 2012, 41(1): 33
[28] 张铁邦, 丁 浩, 邓志海等. Nb、Mo对TiAl基合金高温氧化行为的协同效应研究 [J]. 稀有金属材料与工程, 2012, 41(1): 33
[1] YU Jiaying, WANG Hua, ZHENG Weisen, HE Yanlin, WU Yurui, LI Lin. Effect of the Interface Microstructure of Hot-Dip Galvanizing High-Strength Automobile Steel on Its Tensile Fracture Behaviors[J]. 金属学报, 2020, 56(6): 863-873.
[2] WEI Jie, WEI Yinghua, LI Jing, ZHAO Hongtao, LV Chenxi, DONG Junhua, KE Wei, HE Xiaoyan. Corrosion Behavior of Damaged Epoxy Coated Steel Bars Under the Coupling Effect of Chloride Ion and Carbonization[J]. 金属学报, 2020, 56(6): 885-897.
[3] CHEN Yongjun, BAI Yan, DONG Chuang, XIE Zhiwen, YAN Feng, WU Di. Passivation Behavior on the Surface of Stainless Steel Reinforced by Quasicrystal-Abrasive via Finite Element Simulation[J]. 金属学报, 2020, 56(6): 909-918.
[4] HUANG Yuan, DU Jinlong, WANG Zumin. Progress in Research on the Alloying of Binary Immiscible Metals[J]. 金属学报, 2020, 56(6): 801-820.
[5] GENG Yaoxiang, FAN Shimin, JIAN Jianglin, XU Shu, ZHANG Zhijie, JU Hongbo, YU Lihua, XU Junhua. Mechanical Properties of AlSiMg Alloy Specifically Designed for Selective Laser Melting[J]. 金属学报, 2020, 56(6): 821-830.
[6] CAO Fengting, WEI Jie, DONG Junhua, KE Wei, WANG Tiegang, FAN Qixiang. Corrosion Inhibition Behavior of 1-Hydroxyethylidene-1, 1-Diphosphonic Acid on 20SiMn Steel in Simulated Concrete Pore Solution Containing Cl-[J]. 金属学报, 2020, 56(6): 898-908.
[7] ZHAO Yanchun, MAO Xuejing, LI Wensheng, SUN Hao, LI Chunling, ZHAO Pengbiao, KOU Shengzhong, Liaw Peter K.. Microstructure and Corrosion Behavior of Fe-15Mn-5Si-14Cr-0.2C Amorphous Steel[J]. 金属学报, 2020, 56(5): 715-722.
[8] LIU Zhenpeng, YAN Zhiqiao, CHEN Feng, WANG Shuncheng, LONG Ying, WU Yixiong. Fabrication and Performance Characterization of Cu-10Sn-xNi Alloy for Diamond Tools[J]. 金属学报, 2020, 56(5): 760-768.
[9] LI Xiucheng,SUN Mingyu,ZHAO Jingxiao,WANG Xuelin,SHANG Chengjia. Quantitative Crystallographic Characterization of Boundaries in Ferrite-Bainite/Martensite Dual-Phase Steels[J]. 金属学报, 2020, 56(4): 653-660.
[10] JIANG Yi,CHENG Manlang,JIANG Haihong,ZHOU Qinglong,JIANG Meixue,JIANG Laizhu,JIANG Yiming. Microstructure and Properties of 08Cr19Mn6Ni3Cu2N (QN1803) High Strength Nitrogen Alloyed LowNickel Austenitic Stainless Steel[J]. 金属学报, 2020, 56(4): 642-652.
[11] LIU Zhenbao,LIANG Jianxiong,SU Jie,WANG Xiaohui,SUN Yongqing,WANG Changjun,YANG Zhiyong. Research and Application Progress in Ultra-HighStrength Stainless Steel[J]. 金属学报, 2020, 56(4): 549-557.
[12] YANG Ke,SHI Xianbo,YAN Wei,ZENG Yunpeng,SHAN Yiyin,REN Yi. Novel Cu-Bearing Pipeline Steels: A New Strategy to Improve Resistance to Microbiologically Influenced Corrosion for Pipeline Steels[J]. 金属学报, 2020, 56(4): 385-399.
[13] XIAO Hong,XU Pengpeng,QI Zichen,WU Zonghe,ZHAO Yunpeng. Preparation of Steel/Aluminum Laminated Composites by Differential Temperature Rolling with Induction Heating[J]. 金属学报, 2020, 56(2): 231-239.
[14] CHENG Chao,CHEN Zhiyong,QIN Xushan,LIU Jianrong,WANG Qingjiang. Microstructure, Texture and Mechanical Property ofTA32 Titanium Alloy Thick Plate[J]. 金属学报, 2020, 56(2): 193-202.
[15] DENG Congkun,JIANG Hongxiang,ZHAO Jiuzhou,HE Jie,ZHAO Lei. Study on the Solidification of Ag-Ni Monotectic Alloy[J]. 金属学报, 2020, 56(2): 212-220.
No Suggested Reading articles found!