Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (12): 1529-1537    DOI: 10.11900/0412.1961.2014.00261
Current Issue | Archive | Adv Search |
EFFECTS OF STRUCTURE AND INTERNAL STRESSES IN OXIDE FILMS ON CORROSION MECHANISM OF NEW ZIRCONIUM ALLOY
ZHANG Haixia1,2(), LI Zhongkui3, ZHOU Lian3, XU Bingshe1,2, WANG Yongzhen4
1 Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024
2 Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024
3 Northwest Institute for Nonferrous Metal Research, Xi′an 710016
4 College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024
Cite this article: 

ZHANG Haixia, LI Zhongkui, ZHOU Lian, XU Bingshe, WANG Yongzhen. EFFECTS OF STRUCTURE AND INTERNAL STRESSES IN OXIDE FILMS ON CORROSION MECHANISM OF NEW ZIRCONIUM ALLOY. Acta Metall Sin, 2014, 50(12): 1529-1537.

Download:  HTML  PDF(2484KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion resistance of new zirconium alloys containing Nb, used as the fuel cladding materials in water-cooled nuclear power reactors, is closely related to the characteristics of the oxide films, including the internal stresses and the crystal structure. However, the relation of the corrosion kinetics to the internal stresses and the crystal structure of the oxide films has not been well understood, also the corrosion mechanism of new zirconium alloys has not been confirmed. Therefore, it is helpful to solve the above problems, furthermore improve the corrosion resistance of new zirconium alloys, to characterize the internal stresses and the crystal structure of the oxide films accurately. The internal stresses and the crystal structure of the oxide films of NZ2 zirconium alloy, corroded in 360 ℃, 18.6 MPa lithiated water and 400 ℃, 10.3 MPa steam, were tested by XRD and Raman spectroscopy, and the microstructure of the oxide films was investigated by SEM. The results of the crystal structure show that tetragonal ZrO2 (t-ZrO2) content in the oxide films of NZ2 alloy decreases, monoclinic ZrO2 (m-ZrO2) content increases with the prolongation of the corrosion time, t-ZrO2 transforms into m-ZrO2. And cubic ZrO2 (c-ZrO2) appears in the oxide films when the thickness of the oxide films reaches 2 mm. Corrosion resistance of NZ2 alloy is improved when the content of t-ZrO2 in the oxide films increases. The results of the internal stresses and the microstructure of the oxide films indicate that the high compressive stresses exist in the oxide films. At the beginning of the corrosion, the compressive stresses in the oxide films increase with the corrosion time. When the thickness of the oxide films reaches 2 mm, the compressive stresses exceed the critical value and the stresses are released. The stress relaxation leads to the formation of the cracks, which reduces the protection of the oxide films, therefore the corrosion transition occurs. After the transition, the compressive stresses of the oxide films are constantly low. So the corrosion transition is closely related to the relaxation of the compressive stresses. The high compressive stresses and t-ZrO2 content are corresponding to the good corrosion resistance. Also the stabilization mechanisms of t-ZrO2 and c-ZrO2 are explored, finally the corrosion mechanism of new zirconium alloys is established.

Key words:  zirconium alloy      oxide film      internal stress      crystal structure      corrosion mechanism     
ZTFLH:  TG146.4  
Fund: Supported by National Natural Science Foundation of China (Nos.51372160 and 51242007), Scientific Research Foundation for Returned Overseas Chinese Scholars of Shanxi Province (No.2011-031), Technology Foundation for Selected Overseas Chinese Scholar of Shanxi Province (No.[2011]762)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00261     OR     https://www.ams.org.cn/EN/Y2014/V50/I12/1529

Fig.1  Plots of d-sin2ψ for NZ2 zirconium alloy corroded in 360 ℃ lithiated water for different times (d—interatomic distance of (hkl) diffracting plane, ψ—incidence angle of X-ray, p—slop of d-sin2ψ plot, σ—internal stress of the oxide film)
Fig.2  Plots of d-sin2ψ for NZ2 zirconium alloy corroded in 400 ℃ steam for different times
Fig.3  Relationship of thicknesses and compressive stresses of NZ2 oxide films obtained in 360 ℃ lithiated water and 400 ℃ steam
Condition Time / d Mass gain / (mgcm-2) Oxide film thickness μm p Stress / GPa
360 ℃ 3 0.1288 0.9 - -
lithiated water 14 0.1850 1.2 -0.01318 -2.2
28 0.2285 1.5 -0.01879 -3.1
42 0.2592 1.7 -0.01695 -2.8
70 0.3020 2.0 -0.02284 -3.8
98 0.3453 2.3 -0.01491 -2.5
126 0.3785 2.5 -0.01483 -2.4
154 0.5856 3.9 -0.01113 -1.8
182 0.6808 4.5 - -
210 0.7290 4.9 -0.01011 -1.7
238 0.7728 5.2 -0.01171 -1.9
266 0.9000 6.0 -0.01093 -1.8
294 1.0415 6.9 -0.01022 -1.7
400 ℃ steam 3 0.1700 1.1 -0.01195 -2.0
14 0.2614 1.7 -0.01521 -2.5
28 0.3242 2.2 -0.01740 -2.9
42 0.3747 2.5 -0.01303 -2.1
70 0.5163 3.4 - -
98 0.6232 4.2 -0.00859 -1.4
126 0.7297 4.9 - -
154 0.8247 5.5 -0.00981 -1.6
238 1.1614 7.7 -0.00980 -1.6
266 1.1965 8.0 -0.00929 -1.5
Table 1  Parameters of NZ2 alloy corroded in 360 ℃ lithiated water and 400 ℃ steam for different times
Fig.4  SEM images of oxide film of NZ2 alloy corroded in 360 ℃ lithiated water for 3 d

(a) low magnification (b) high magnification

Fig.5  SEM images of oxide film of NZ2 alloy corroded in 360 ℃ lithiated water for 294 d

(a) low magnification (b) high magnification

Fig.6  XRD spectra of the oxide films of NZ2 alloy exposed to 360 ℃ lithiated water for different times (The subscripts T, M, C represent tetragonal, monoclinic, cubic ZrO2, respectively)
Fig.7  XRD spectra of oxide films of NZ2 alloy exposed to 400 ℃ steam for different times
Fig.8  Relationship of corrosion time and tetragonal ZrO2 content in the oxide film of NZ2 alloy after exposed to 360 ℃ lithiated water and 400 ℃ steam
Fig.9  Raman spectrum of oxide film of NZ2 alloy exposed to 360 ℃ lithiated water for 14 d (The sign T represents tetragonal ZrO2)
Position / cm-1 Relative intensity Shift / cm-1 Attribution
177.6 100 -0.2 M
187.4 77.6 2.1 M
221.0 22.4 0.4 M
278.1 28.5 -11.0 T
334.0 56.7 -1.5 M
379.9 15.6 1.2 M
439.1 31.0 16.9 T
476.9 71.5 -2.3 M
503.8 31.0 -3.6 M
532.9 25.9 4.2 M
556.3 15.4 1.6 M
619.0 34.3 -3.8 M
637.9 36.1 -0.3 M
Table 2  Peak positions, intensities (relative to the most intense 177.6 cm-1) and shifts of peaks of oxide film of NZ2 alloy exposed in 360 ℃ lithiated water for 14 d
  
[1] Baek J H, Jeong Y H, Kim I S. J Nucl Mater, 2000; 28: 235
[2] Yilmazbayhan A, Motta A T, Comstock R J, Sabol G P, Lai B, Cai Z H. J Nucl Mater, 2004; 324: 6
[3] Maixner J, Krýsa J, Matějka P, Vrtilková V. Mater Sci Forum, 2000; 321-324: 737
[4] Godlewski J, Gros J P, Lambertin M, Wadier J F, Weidinger H. Zirconium in the Nuclear Industry: Ninth International Symposium, Kobe: ASTM International, 1991: 416
[5] Takeda K, Anada H. Zirconium in the Nuclear Industry: Twelfth International Symposium, Toroton: ASTM International, 2000: 592
[6] Krýsa J, Maixner J, Matějka P, Vrtílková V. Mater Chem Phys, 2000; 63: 1
[7] Arima T, Miyata K, Inagaki Y, Idemitsu K. Corros Sci, 2005; 47: 435
[8] Zhiyaev A P, Szpunar J A. J Nucl Mater, 1999; 264: 327
[9] Pétigny N, Barberis P, Lemaignan C, Valot C, Lallemant M. J Nucl Mater, 2000; 280: 318
[10] Oskarsson M, Ahlberg E, Andersson U, Pettersson K. J Nucl Mater, 2001; 297: 77
[11] Liu W Q, Li Q, Zhou B X. Rare Met Mater Sci Eng, 2001; 30: 81
(刘文庆, 李 强, 周邦新. 稀有金属材料与工程, 2001; 30: 81)
[12] Godlewski J, Bouvier P, Fayette L. Zirconium in the Nuclear Industry: Twelfth International Symposium, West Conshohoeken, PA: ASTM International, 2000: 877
[13] Hong H S, Kim S J, Lee K S. J Nucl Mater, 1999; 273: 177
[14] Liu W Q, Li Q, Zhou B X. Rare Met Mater Sci Eng, 2004; 33: 1112
(刘文庆, 李 强, 周邦新. 稀有金属材料与工程, 2004; 33: 1112)
[15] Shao S Y. Laser Opt Prog, 2005; 42(1): 22
(邵淑英. 激光与光电子学进展, 2005; 42(1): 22)
[16] Anada H, Takeda K. Zirconium in the Nuclear Industry: Eleventh International Symposium, West Conshohoeken, PA: ASTM International, 1996: 35
[17] Weidinger H G, Ruhmann H, Cheliotis G, Maguire M, Yau T L. Zirconium in the Nuelear Industly: Ninth International Symposium, Kobe: ASTM International, 1991: 499
[18] Bechade J L, Goudeau P, Gailhanou M, Yvon O. High Temp Mater Proc, 1998; 2: 359
[19] Gosmain L, Valot C, Ciosmak D, Sicardy O. Solid State Ionics, 2001; 141-142: 633
[20] Wang D N, Guo Y Q, Liang K M, Tao K. Science in China, 1998; 28A: 823
(王大宁, 郭永权, 梁开明, 陶 琨. 中国科学, 1998; 28A: 823 )
[21] Garvie R C, Nicholson P S. J Am Ceram Soc, 1972; 55: 303
[22] Steinberg E, Weidinger H G, Schaa A. Zirconium in the Nuclear Industry: Sixth International Symposium, Vancouver: ASTM International, 1984: 106
[23] Barberis P, Merle-Méjean T, Quintard P. J Nucl Mater, 1997; 246: 232
[24] Zhang H X, Li Z K, Xu B S, Wang Y Z, Zhou L. J Funct Mater, 2014; 85: 02001
(章海霞, 李中奎, 许并社, 王永祯, 周 廉. 功能材料, 2014; 85: 02001)
[25] Stapper G, Bernasconi M, Nicoloso N, Parrinello M. Phys Rev, 1999; 59B: 797
[1] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[2] SHEN Zhao, WANG Zhipeng, HU Bo, LI Dejiang, ZENG Xiaoqin, DING Wenjiang. Research Progress on the Mechanisms Controlling High-Temperature Oxidation Resistance of Mg Alloys[J]. 金属学报, 2023, 59(3): 371-386.
[3] LIU Laidi, DING Biao, REN Weili, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Multilayer Structure of DZ445 Ni-Based Superalloy Formed by Long Time Oxidation at High Temperature[J]. 金属学报, 2023, 59(3): 387-398.
[4] LIAO Jingjing, ZHANG Wei, ZHANG Junsong, WU Jun, YANG Zhongbo, PENG Qian, QIU Shaoyu. Periodic Densification-Transition Behavior of Zr-Sn-Nb-Fe-V Alloys During Uniform Corrosion in Superheated Steam[J]. 金属学报, 2023, 59(2): 289-296.
[5] SUN Rongrong, YAO Meiyi, LIN Xiaodong, ZHANG Wenhuai, QIU Yunlong, HU Lijuan, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. Effect of Ti on the Corrosion Behavior of Fe22Cr5Al3Mo Alloy in 500oC Superheated Steam[J]. 金属学报, 2022, 58(5): 610-622.
[6] LIN Xiaodong, MA Haibin, REN Qisen, SUN Rongrong, ZHANG Wenhuai, HU Lijuan, LIANG Xue, LI Yifeng, YAO Meiyi. Corrosion Behaviors of Fe13Cr5Al4Mo Alloy in High-Temperature High-Pressure Water Environments[J]. 金属学报, 2022, 58(12): 1611-1622.
[7] LIU Yuwei, ZHAO Hongtao, WANG Zhenyao. Initial Corrosion Behavior of Carbon Steel and Weathering Steel in Nansha Marine Atmosphere[J]. 金属学报, 2020, 56(9): 1247-1254.
[8] QIAN Yue,SUN Rongrong,ZHANG Wenhuai,YAO Meiyi,ZHANG Jinlong,ZHOU Bangxin,QIU Yunlong,YANG Jian,CHENG Guoguang,DONG Jianxin. Effect of Nb on Microstructure and Corrosion Resistance of Fe22Cr5Al3Mo Alloy[J]. 金属学报, 2020, 56(3): 321-332.
[9] YAO Meiyi,ZHANG Xingwang,HOU Keke,ZHANG Jinlong,HU Pengfei,PENG Jianchao,ZHOU Bangxin. The Initial Corrosion Behavior of Zr-0.75Sn-0.35Fe-0.15Cr Alloy in Deionized Water at 250 ℃[J]. 金属学报, 2020, 56(2): 221-230.
[10] Ying LI,Chao SUN,Jun GONG. Performance Research of Magnesium Base Lanthanum Hexaaluminate Prepared by Co-Precipitation[J]. 金属学报, 2019, 55(5): 657-663.
[11] YAO Meiyi, LIN Yuchen, HOU Keke, LIANG Xue, HU Pengfei, ZHANG Jinlong, ZHOU Bangxin. Effect of Sn on Initial Corrosion Behavior of Zirconium Alloy in 280 LiOH Aqueous Solution[J]. 金属学报, 2019, 55(12): 1551-1560.
[12] Jianan ZOU, Xiaolu PANG, Kewei GAO. Crevice Corrosion of X70 and 3Cr Low Alloy Steels Under Supercritical CO2 Condition[J]. 金属学报, 2018, 54(4): 537-546.
[13] Xiaoyi ZHANG, Hailong SHANG, Bingyang MA, Rongbin LI, Geyang LI. Brazing of Coated Al Foil Filler to AlN Ceramic[J]. 金属学报, 2018, 54(4): 575-580.
[14] Teng GUO, Hongtao LI, Bailing JIANG, Yibin XING, Xinyu ZHANG. Evolution of Substrate "Heat Affected Zone" in Ion Plating and Its Effect on Coatings[J]. 金属学报, 2018, 54(3): 463-469.
[15] Bing CHEN,Changyuan GAO,Jiao HUANG,Yajing MAO,Meiyi YAO,Jinlong ZHANG,Bangxin ZHOU,Qiang LI. Corrosion Behavior of Second Phase Alloys of β-(Nb, Zr) in Deionized Water at 360 ℃[J]. 金属学报, 2017, 53(4): 447-454.
No Suggested Reading articles found!