Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (7): 811-821    DOI: 10.3724/SP.J.1037.2012.00740
Current Issue | Archive | Adv Search |
RESEARCH ON HOT DEFORMATION BEHAVIOR AND HOT WORKABILITY OF ALLOY 800H
CAO Yu 1), DI Hongshuang1), ZHANG Jingqi1), MA Tianjun2), ZHANG Jiecen1)
1) State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819
2) Special Steel Business Unit, Baoshan Iron & Steel Co., Ltd., Shanghai 200940
Cite this article: 

CAO Yu, DI Hongshuang, ZHANG Jingqi, MA Tianjun, ZHANG Jiecen. RESEARCH ON HOT DEFORMATION BEHAVIOR AND HOT WORKABILITY OF ALLOY 800H. Acta Metall Sin, 2013, 49(7): 811-821.

Download:  PDF(4056KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

During the processing of hot working, the material undergoes shape and microstructural changes depending on the processing history. Therefore, the optimization of the processing parameters such as temperature, strain and strain rate is of great importance to achieve a defect-free component with desired microstructure. In order to optimize the hot working technology, the hot deformation behavior and hot workability of alloy 800H in the temperature range of 850-1100℃ and strain rate range of 0.01-30 s-1 were investigated with single-pass compression tests on MMS-300 thermo-simulation machine. The flow stress-strain curves of alloy 800H under different deformation conditions were plotted. The influence of precipitation on hot deformation below 950℃ at low strain rates was studied. The processing map was established based on dynamic materials model. The effect of processing parameters on hot workability and the mechanism of hot deformation in different regimes of processing map were analyzed combined with the observation of microstructural evolution. The results revealed that the adiabatic heating is generated obviously if strain rate is higher than 1 s-1 during hot deformation, which leads to flow softening via the mechanism of rotational dynamic recrystallization (DRX). Some ultrafine grains can be found in the core of shear bands. The magnitude of temperature rising and subsequent softening are supposed to be more significant at higher strain rates or lower deformation temperatures. The occurrence of DRX is inhibited by “Zener effect'' which pins the migration of grain boundaries and increases the activation energy of hot deformation. The alloy 800H exhibits a better workability in deformation temperature range from 975℃  to 1100℃ and strain rate range from 0.01 s-1 to 0.3 s-1 with the efficiency of power dissipation within the range of 35%—48%.

Key words:  alloy 800H      hot deformation      adiabatic heating      strain induced precipitation      processing map     
Received:  18 December 2012     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00740     OR     https://www.ams.org.cn/EN/Y2013/V49/I7/811

[1] Liu Q, Hansen N.  Scr Metall Mater, 1995; 32: 1289

[2] Hansen N, Huang X, Winther G.  Mater Sci Eng, 2008; A494: 61
[3] Meyers M A, Andrade U R, Chokshi A H.  Metall Mater Trans, 1995; 26A: 2881
[4] Nemat-Nasser S, Isaacs J B, Liu M Q.  Acta Mater, 1998; 46: 1307
[5] Meyer M A, Xu Y B, Xue Q, Perez-Prado M T, McNelley T R.  Acta Mater, 2003; 51: 1307
[6] Xue Q, Bingert J F, Henrie B L, Gray III G T.  Mater Sci Eng, 2008; A473: 279
[7] Xu Y B, Yang H J, Meyer M A.  Scr Mater, 2008; 58: 691
[8] Derby B.  Acta Metall, 1991; 39: 955
[9] Meyers M A, Nesterenko V F, Lasalvia J C, Xu Y B, Xue Q J.  Phys IV, 2000; 9: 51
[10] Hines J A, Vecchio K S, Ahzi S.  Metall Mater Trans, 1998; 29A: 191
[11] Momeni A, Dehghani K, Keshmiri H, Ebrahimi G R.  Mater Sci Eng, 2010; A527: 1605
[12] Ju Q, Li D G, Liu G Q.  Acta Metall Sin, 2006; 42: 219
(鞠泉, 李殿国, 刘国权. 金属学报, 2006; 42: 219)
[13] Zhang J Q, Di H S, Wang H T, Mao K, Ma T J, Cao Y.  J Mater Sci, 2012; 47: 4000
[14] Sivaprasad P V, Mannan S L, Prasad Y V R K, Chaturvedi R C.  Mater Sci Technol, 2001; 17: 545
[15] Tang W N, Chen R S, Han E H.  Acta Metall Sin, 2006; 42: 1096
 (唐伟能, 陈荣石, 韩恩厚. 金属学报, 2006; 42: 1096)
[16] Meng G, Li B L, Li H M, Nie Z R.  Mater Sci Eng, 2009; A517: 132
[17] Cavaliere P, Cerri E, Evangelista E.  Mater Sci Eng, 2004; A387--389: 857
[18] Lin Y C, Chen M S, Zhong J.  Mech Res Commun, 2008; 35: 142
[19] Mandal S, Bhaduri A K, Subramaya Sarma V.  Metall Mater Trans, 2012; 43A: 2056
[20] Roberts W, Ahlblom B.  Acta Metall, 1978; 26: 801
[21] Meyers M A, Nesterenko V F, Lasalvia J C, Xue Q.  Mater Sci Eng, 2001; A317: 204
[22] Monajati H, Jahazi M, Yue S, Taheri A K.  Metall Mater Trans, 2005; 36A: 895
[23] Goetz R L, Semiatin S L.  J Mater Eng Perform, 2001; 10: 710
[24] Mataya M C, Sackschewsky V E.  Metall Mater Trans, 1994; 41A: 2737
[25] Liu Y, Hu R, Li J S, Kou H C, Li H W, Chang H, Fu H Z.  Mater Sci Eng, 2008; A497: 283
[26] Akben M G, Weiss I, Jonas J J.  Acta Metall, 1981; 29: 114
[27] Lee K J.  Scr Mater, 1999; 40: 840
[28] Vega M I, Medina S F, Chapa M, Quispe A.  ISIJ Int, 1999; 39: 1304
[29] Guo J T, Ranucci D, Picco E, Strocchi M.  Metall Mater Trans, 1983; 14A: 2329
[30] Cao Y, Di H S, Zhang J C, Ma T J, Zhang J Q.  Acta Metall Sin, 2012; 48: 1179
(曹宇, 邸洪双, 张洁岑, 马天军, 张敬奇. 金属学报, 2012; 48: 1179)
[31] Zurob H S, Berchet Y, Purdy G.  Acta Mater, 2001; 49: 4183
[32] Prasad Y V R K, Gegel H L, Doraivelu S M, Malas J C, Morgan J T, Lark K A, Barker D R.  Metall Mater Trans, 1984; 15A: 1883
[33] Kalyan Kumar A K S.  PhD Dissertation, Indian Institute of Science, Bangalore, India, 1987
[34] Ziegler H.  Progress in Solid Mechanics. New York: Wiley, 1963: 93
[35] Prasad Y V R K, Seshacharyulu T.  Int Mater Rev, 1998; 43: 243
[1] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[2] SUN Yi, ZHENG Qinyuan, HU Baojia, WANG Ping, ZHENG Chengwu, LI Dianzhong. Mechanism of Dynamic Strain-Induced Ferrite Transformation in a 3Mn-0.2C Medium Mn Steel[J]. 金属学报, 2022, 58(5): 649-659.
[3] YAN Mengqi, CHEN Liquan, YANG Ping, HUANG Lijun, TONG Jianbo, LI Huanfeng, GUO Pengda. Effect of Hot Deformation Parameters on the Evolution of Microstructure and Texture of β Phase in TC18 Titanium Alloy[J]. 金属学报, 2021, 57(7): 880-890.
[4] NI Ke, YANG Yinhui, CAO Jianchun, WANG Liuhang, LIU Zehui, QIAN Hao. Softening Behavior of 18.7Cr-1.0Ni-5.8Mn-0.2N Low Nickel-Type Duplex Stainless Steel During Hot Compression Deformation Under Large Strain[J]. 金属学报, 2021, 57(2): 224-236.
[5] LIU Chao, YAO Zhihao, JIANG He, DONG Jianxin. The Feasibility and Process Control of Uniform Equiaxed Grains by Hot Deformation in GH4720Li Alloy with Millimeter-Level Coarse Grains[J]. 金属学报, 2021, 57(10): 1309-1319.
[6] LI Tianrui, LIU Guohuai, YU Shaoxia, WANG Wenjuan, ZHANG Fengyi, PENG Quanyi, WANG Zhaodong. Microstructure Evolution and Deformation Mechanisms by Direct Hot-Pack Rolling for As-Cast Ti-46Al-8Nb Alloys[J]. 金属学报, 2020, 56(8): 1091-1102.
[7] ZHOU Li, LI Ming, WANG Quanzhao, CUI Chao, XIAO Bolv, MA Zongyi. Study of the Hot Deformation and Processing Map of 31%B4Cp/6061Al Composites[J]. 金属学报, 2020, 56(8): 1155-1164.
[8] CHEN Wenxiong, HU Baojia, JIA Chunni, ZHENG Chengwu, LI Dianzhong. Post-Dynamic Softening of Austenite in a Ni-30%Fe Model Alloy After Hot Deformation[J]. 金属学报, 2020, 56(6): 874-884.
[9] ZHANG Yong, LI Xinxu, WEI Kang, WAN Zhipeng, JIA Chonglin, WANG Tao, LI Zhao, SUN Yu, LIANG Hongyan. Hot Deformation Characteristics of Novel Wrought Superalloy GH4975 Extruded Rod Used for 850 ℃ Turbine Disc[J]. 金属学报, 2020, 56(10): 1401-1410.
[10] MA Kai, ZHANG Xingxing, WANG Dong, WANG Quanzhao, LIU Zhenyu, XIAO Bolv, MA Zongyi. Optimization and Simulation of Deformation Parameters of SiC/2009Al Composites[J]. 金属学报, 2019, 55(10): 1329-1337.
[11] Bolü XIAO, Zhiye HUANG, Kai MA, Xingxing ZHANG, Zongyi MA. Research on Hot Deformation Behaviors of Discontinuously Reinforced Aluminum Composites[J]. 金属学报, 2019, 55(1): 59-72.
[12] Xiting ZHONG, Lei WANG, Feng LIU. Study on Formation Mechanism of Necklace Structure in Discontinuous Dynamic Recrystallization of Incoloy 028[J]. 金属学报, 2018, 54(7): 969-980.
[13] Yusen SU, Yinhui YANG, Jianchun CAO, Yuliang BAI. Research on Hot Working Behavior of Low-NickelDuplex Stainless Steel 2101[J]. 金属学报, 2018, 54(4): 485-493.
[14] Ming ZHANG, Guoquan LIU, Benfu HU. Effect of Microstructure Instability on Hot Plasticity During Thermomechanical Processing in PM Nickel-Based Superalloy[J]. 金属学报, 2017, 53(11): 1469-1477.
[15] Cunyu WANG,Ying CHANG,Jie YANG,Kunmin ZHAO,Han DONG. THE COMBINED EFFECT OF HOT DEFORMATION PLUS QUENCHING AND PARTITIONING TREATMENT ON MARTENSITE TRANSFORMATION OF LOW CARBON ALLOYED STEEL[J]. 金属学报, 2015, 51(8): 913-919.
No Suggested Reading articles found!