Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (2): 169-177    DOI: 10.11900/0412.1961.2014.00276
Current Issue | Archive | Adv Search |
INFLUENCE OF PARTICLES WITH DIFFERENT SIZES ON MICROSTRUCTURE, TEXTURE AND MECHAN-ICAL PROPERTIES OF Al-Mg-Si-Cu SERIES ALLOYS
PENG Xiangyang(), GUO Mingxing, WANG Xiaofeng, CUI Li, ZHANG Jishan, ZHUANG Linzhong
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083
Cite this article: 

PENG Xiangyang, GUO Mingxing, WANG Xiaofeng, CUI Li, ZHANG Jishan, ZHUANG Linzhong. INFLUENCE OF PARTICLES WITH DIFFERENT SIZES ON MICROSTRUCTURE, TEXTURE AND MECHAN-ICAL PROPERTIES OF Al-Mg-Si-Cu SERIES ALLOYS. Acta Metall Sin, 2015, 51(2): 169-177.

Download:  HTML  PDF(11081KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

To reduce the weight of car body, Al-Mg-Si-Cu alloys have been used to produce outer body panels of automobiles due to their relatively good formability in the solution treated condition and high strength in the age hardened condition. However, their formability is significantly poor compared to that of steels, which are the major drawbacks to wide-scale application of aluminum in the automotive industry. The microstructural characteristics developed during recrystallization, most notably grain size and crystallographic texture, play a dominant role in controlling the mechanical properties and formability of sheet in the T4 condition. In this work, the effect of particles with different sizes on the mechanical properties, microstructure and texture of Al-Mg-Si-Cu alloys was studied through tensile test, OM, SEM, TEM and EBSD measurement. The results reveal that with increase of solute concentration, the average plastic strain ratio, yield strength and ultimate tensile strength increase, but the elongation decreases and with different extents in the three directions. In addition, the number of observed particles with different sizes in the alloy matrix such as Mg2Si, Al15Mn3Si2 and α-Al(Fe, Mn)Si phases also increases. When the size and concentration of these particles are controlled appropriately, lots of finer recrystallized grains can form during solution treatment due to the particle stimulated nucleation (PSN) effect of coarse particles and pinning effect of finer particles. The main texture components include CubeND18, Goss{011}<100>, P{011}<122> and Cu{112}<111> for the alloy with fine-grained structure. At last, according to the relationship among alloy composition, thermomechanical processing and microstructure, the model of nucleation and growth of recrystallized grains affected by the particles with different sizes was also proposed。

Key words:  Al-Mg-Si-Cu alloy      particle      recrystallization      texture      PSN effect     
Received:  23 May 2014     
ZTFLH:  TG166  
Fund: Supported by National High Technology Research and Development Program of China (No. 2013AA032403), National Natural Science Foundation of China (No.51301016) and Beijing Higher Education Yong Elite Teacher Project (No.YETP0409)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00276     OR     https://www.ams.org.cn/EN/Y2015/V51/I2/169

Alloy Mg Si Cu Mn Fe Al
1 0.90 0.50 0.20 0.10 0 Bal.
2 0.90 0.60 0.20 0.15 0.20 Bal.
3 0.90 0.80 0.20 0.30 0.50 Bal.
Table 1  Chemical compositions of experimental Al-Mg-Si-Cu alloys
Fig.1  Schematic of alloy sheet sample for tensile test (unit: mm)
Fig.2  Engineering stress-strain curves of the alloy 1 (a), alloy 2 (b) and alloy 3 (c) in different directions
Fig.3  Yield strength (a), ultimate tensile strength (b), elongation (c) and plastic strain ratio r (d) of Al-Mg-Si-Cu alloys
Fig.4  Microstructures of alloy 1 (a, d, g, j), alloy 2 (b, e, h, k) and alloy 3 (c, f, i, l) at homogenization (a~c), annealing (d~f), cold rolling (g~i) and solution (j~l) states
Fig.5  Morphologies (a, c) and EDS analysis of precipitates corresponding to points A (b) and B (d) for alloy 1 (a, b) and alloy 3 (c, d)
Fig.6  TEM images of alloy 3 after cold rolling from 4 mm to 1 mm
Fig.7  Grain orientation distribution maps by EBSD analysis (a~c) and grain size distributions (d~f) in alloy 1 (a, d), alloy 2 (b, e) and alloy 3 (e, f) after solution treatment
Fig.8  Orientation distribution function (ODF) maps of alloy 1 (a), alloy 2 (b), alloy 3 (c) under solution treatment condition (j1, j2 and f are the Euler angles)
Alloy CubeND Goss Brass P Cu
1 9.00 3.90 2.78 - -
2 13.20 2.96 2.84 - -
3 9.95 4.20 - 6.36 4.54
Table 2  Volume fraction of texture component in the three alloys after solution treatment
Fig.9  Schematic illustration of particle distribution (a, d), process of nucleation (b, e) and growth (c, f) of recrystallization grains in alloy 1 (a~c) and alloy 3 (d~f)
[1] Miller W S, Zhuang L, Bottema J, Wettebrood A J, De S P, Haszler A, Vieregge A. Mater Sci Eng, 2000; A280: 37
[2] Burger G B, Gupta A K, Jeffrey P W, Lloyd D J. Mater Charact, 1995; 35(1): 23
[3] Engler O, Hirsch J. Mater Sci Forum, 1996; 217: 479
[4] Hirsch J, Al-Samman T. Acta Mater, 2013; 61: 818
[5] Ma M T. Iron Steel, 2001; 36(8): 64
(马鸣图. 钢铁, 2001; 36(8): 64)
[6] Esmaeili S, Lloyd D J. Acta Mater, 2005; 53: 5257
[7] Miki Y, Koyama K, Noguchi O, Ueno Y, Komatsubara T. Mater Sci Forum, 2007; 539: 333
[8] Engler O, Hirsch J. Mater Sci Eng, 2002; A336: 249
[9] Singh R K, Singh A K. Scr Mater, 1998; 38: 1299
[10] Engler O, Kong X W, Yang P. Scr Mater, 1997; 37: 1665
[11] Bennett T A, Petrov R H, Kestens L A I, Zhuang L, De S P. Scr Mater, 2010; 63: 461
[12] Liu Q, Yao Z Y, Godfrey A, Liu W. J Alloys Compd, 2009; 482: 264
[13] Vatne H E, Engler O, Nes E. Mater Sci Technol, 1997; 13: 93
[14] Engler O. Mater Sci Technol, 1996; 12: 859
[15] Engler O, Hirsch J, Lücke K. Acta Mater, 1995; 43: 121
[16] Higginson R L, Aindow M, Bate P S. Mater Sci Eng, 1997; A225: 9
[17] Zhuang L, Bottema J, Kaasenbrood P, Miller W S, De S P. Mater Sci Forum, 1996; 217: 487
[18] Jeniski R A, Thanaboonsombut B, Sanders T H. Metall Mater Trans, 1996; 27A: 19
[19] Cao L Y, Guo M X, Cui H, Cai Y H, Zhang Q X, Hu X Q, Zhang J S. Acta Metall Sin, 2013; 49: 428
(曹零勇, 郭明星, 崔 华, 蔡元华, 张巧霞, 胡晓倩, 张济山. 金属学报, 2013; 49: 428)
[20] Sidor J, Petrov R H, Kestens L A I. Mater Sci Eng, 2010; A528: 413
[21] Inoue H, Takasugi T. Mater Trans, 2007; 48: 2014
[22] Hirsch J, Lücke K. Acta Metall, 1988; 36: 2863
[23] Rollett A, Humphreys F J, Rohrer G S, Hatherly M. Recrystallization and Related Annealing Phenomena. 2nd Ed., Amsterdam: Elsevier Ltd, 2004: 408
[24] Bennett T A, Petrov R H, Kestens L A I. Scr Mater, 2010; 62: 78
[25] Benum S, Nes E. Acta Mater, 1997; 45: 4593
[1] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[3] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[4] ZHANG Qiliang, WANG Yuchao, LI Guangda, LI Xianjun, HUANG Yi, XU Yunze. Erosion-Corrosion Performance of EH36 Steel Under Sand Impacts of Different Particle Sizes[J]. 金属学报, 2023, 59(7): 893-904.
[5] LU Yuhua, WANG Haizhou, LI Dongling, FU Rui, LI Fulin, SHI Hui. A Quantitative and Statistical Method of γ' Precipitates in Superalloy Based on the High-Throughput Field Emission Scanning Eelectron Microscope[J]. 金属学报, 2023, 59(7): 841-854.
[6] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[7] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[8] XU Lei, TIAN Xiaosheng, WU Jie, LU Zhengguan, YANG Rui. Microstructure and Mechanical Properties of Inconel 718 Powder Alloy Prepared by Hot Isostatic Pressing[J]. 金属学报, 2023, 59(5): 693-702.
[9] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[10] WANG Meng, YANG Yongqiang, Trofimov Vyacheslav, SONG Changhui, ZHOU Hanxiang, WANG Di. Effects of Particle Size on Processability of AlSi10Mg Alloy Manufactured by Selective Laser Melting[J]. 金属学报, 2023, 59(1): 147-156.
[11] SUN Tengteng, WANG Hongze, WU Yi, WANG Mingliang, WANG Haowei. Effect ofIn Situ 2%TiB2 Particles on Microstructure and Mechanical Properties of 2024Al Additive Manufacturing Alloy[J]. 金属学报, 2023, 59(1): 169-179.
[12] WU Caihong, FENG Di, ZANG Qianhao, FAN Shichun, ZHANG Hao, LEE Yunsoo. Microstructure Evolution and Recrystallization Behavior During Hot Deformation of Spray Formed AlSiCuMg Alloy[J]. 金属学报, 2022, 58(7): 932-942.
[13] GUO Yujing, BAO Haoming, FU Hao, ZHANG Hongwen, LI Wenhong, CAI Weiping. Ultrasonic Emulsification Preparation of Metallic Rubidium Sol and Its Ignition Performance[J]. 金属学报, 2022, 58(6): 792-798.
[14] REN Shaofei, ZHANG Jianyang, ZHANG Xinfang, SUN Mingyue, XU Bin, CUI Chuanyong. Evolution of Interfacial Microstructure of Ni-Co Base Superalloy During Plastic Deformation Bonding and Its Bonding Mechanism[J]. 金属学报, 2022, 58(2): 129-140.
[15] JIANG Weining, WU Xiaolong, YANG Ping, GU Xinfu, XIE Qingge. Formation of Dynamic Recrystallization Zone and Characteristics of Shear Texture in Surface Layer of Hot-Rolled Silicon Steel[J]. 金属学报, 2022, 58(12): 1545-1556.
No Suggested Reading articles found!