Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (2): 169-177    DOI: 10.11900/0412.1961.2014.00276
Current Issue | Archive | Adv Search |
INFLUENCE OF PARTICLES WITH DIFFERENT SIZES ON MICROSTRUCTURE, TEXTURE AND MECHAN-ICAL PROPERTIES OF Al-Mg-Si-Cu SERIES ALLOYS
PENG Xiangyang, GUO Mingxing, WANG Xiaofeng, CUI Li, ZHANG Jishan, ZHUANG Linzhong
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083
Download:  HTML  PDF(11081KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  To reduce the weight of car body, Al-Mg-Si-Cu alloys have been used to produce outer body panels of automobiles due to their relatively good formability in the solution treated condition and high strength in the age hardened condition. However, their formability is significantly poor compared to that of steels, which are the major drawbacks to wide-scale application of aluminum in the automotive industry. The microstructural characteristics developed during recrystallization, most notably grain size and crystallographic texture, play a dominant role in controlling the mechanical properties and formability of sheet in the T4 condition. In this work, the effect of particles with different sizes on the mechanical properties, microstructure and texture of Al-Mg-Si-Cu alloys was studied through tensile test, OM, SEM, TEM and EBSD measurement. The results reveal that with increase of solute concentration, the average plastic strain ratio, yield strength and ultimate tensile strength increase, but the elongation decreases and with different extents in the three directions. In addition, the number of observed particles with different sizes in the alloy matrix such as Mg2Si, Al15Mn3Si2 and α-Al(Fe, Mn)Si phases also increases. When the size and concentration of these particles are controlled appropriately, lots of finer recrystallized grains can form during solution treatment due to the particle stimulated nucleation (PSN) effect of coarse particles and pinning effect of finer particles. The main texture components include CubeND18, Goss{011}<100>, P{011}<122> and Cu{112}<111> for the alloy with fine-grained structure. At last, according to the relationship among alloy composition, thermomechanical processing and microstructure, the model of nucleation and growth of recrystallized grains affected by the particles with different sizes was also proposed。
Key words:  Al-Mg-Si-Cu alloy      particle      recrystallization      texture      PSN effect     
Received:  23 May 2014     
ZTFLH:  TG166  
Fund: ; Supported by National High Technology Research and Development Program of China (No. 2013AA032403), National Natural Science Foundation of China (No.51301016) and Beijing Higher Education Yong Elite Teacher Project (No.YETP0409)
Corresponding Authors:  Correspondent: GUO Mingxing, associate professor, Tel: (010)82375844, E-mail: mingxingguo@skl.ustb.edu.cn     E-mail:  mingxingguo@skl.ustb.edu.cn

Cite this article: 

PENG Xiangyang, GUO Mingxing, WANG Xiaofeng, CUI Li, ZHANG Jishan, ZHUANG Linzhong. INFLUENCE OF PARTICLES WITH DIFFERENT SIZES ON MICROSTRUCTURE, TEXTURE AND MECHAN-ICAL PROPERTIES OF Al-Mg-Si-Cu SERIES ALLOYS. Acta Metall Sin, 2015, 51(2): 169-177.

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00276     OR     https://www.ams.org.cn/EN/Y2015/V51/I2/169

Fig.9  

Schematic illustration of particle distribution (a, d), process of nucleation (b, e) and growth (c, f) of recrystallization grains in alloy 1 (a~c) and alloy 3 (d~f)

Fig.1  

Schematic of alloy sheet sample for tensile test (unit: mm)

Fig.2  

Engineering stress-strain curves of the alloy 1 (a), alloy 2 (b) and alloy 3 (c) in different directions

Fig.3  

Yield strength (a), ultimate tensile strength (b), elongation (c) and plastic strain ratio r (d) of Al-Mg-Si-Cu alloys

Fig.4  

Microstructures of alloy 1 (a, d, g, j), alloy 2 (b, e, h, k) and alloy 3 (c, f, i, l) at homogenization (a~c), annealing (d~f), cold rolling (g~i) and solution (j~l) states

Fig.5  

Morphologies (a, c) and EDS analysis of precipitates corresponding to points A (b) and B (d) for alloy 1 (a, b) and alloy 3 (c, d)

Fig.6  

TEM images of alloy 3 after cold rolling from 4 mm to 1 mm

Fig.7  

Grain orientation distribution maps by EBSD analysis (a~c) and grain size distributions (d~f) in alloy 1 (a, d), alloy 2 (b, e) and alloy 3 (e, f) after solution treatment

Fig.8  

Orientation distribution function (ODF) maps of alloy 1 (a), alloy 2 (b), alloy 3 (c) under solution treatment condition (j1, j2 and f are the Euler angles)

Table 1  

Chemical compositions of experimental Al-Mg-Si-Cu alloys

Table 2  

Volume fraction of texture component in the three alloys after solution treatment

[1] Miller W S, Zhuang L, Bottema J, Wettebrood A J, De S P, Haszler A, Vieregge A. Mater Sci Eng, 2000; A280: 37
[2] Burger G B, Gupta A K, Jeffrey P W, Lloyd D J. Mater Charact, 1995; 35(1): 23
[3] Engler O, Hirsch J. Mater Sci Forum, 1996; 217: 479
[4] Hirsch J, Al-Samman T. Acta Mater, 2013; 61: 818
[5] Ma M T. Iron Steel, 2001; 36(8): 64 (马鸣图. 钢铁, 2001; 36(8): 64)
[6] Esmaeili S, Lloyd D J. Acta Mater, 2005; 53: 5257
[7] Miki Y, Koyama K, Noguchi O, Ueno Y, Komatsubara T. Mater Sci Forum, 2007; 539: 333
[8] Engler O, Hirsch J. Mater Sci Eng, 2002; A336: 249
[9] Singh R K, Singh A K. Scr Mater, 1998; 38: 1299
[10] Engler O, Kong X W, Yang P. Scr Mater, 1997; 37: 1665
[11] Bennett T A, Petrov R H, Kestens L A I, Zhuang L, De S P. Scr Mater, 2010; 63: 461
[12] Liu Q, Yao Z Y, Godfrey A, Liu W. J Alloys Compd, 2009; 482: 264
[13] Vatne H E, Engler O, Nes E. Mater Sci Technol, 1997; 13: 93
[14] Engler O. Mater Sci Technol, 1996; 12: 859
[15] Engler O, Hirsch J, Lücke K. Acta Mater, 1995; 43: 121
[16] Higginson R L, Aindow M, Bate P S. Mater Sci Eng, 1997; A225: 9
[17] Zhuang L, Bottema J, Kaasenbrood P, Miller W S, De S P. Mater Sci Forum, 1996; 217: 487
[18] Jeniski R A, Thanaboonsombut B, Sanders T H. Metall Mater Trans, 1996; 27A: 19
[19] Cao L Y, Guo M X, Cui H, Cai Y H, Zhang Q X, Hu X Q, Zhang J S. Acta Metall Sin, 2013; 49: 428 (曹零勇, 郭明星, 崔 华, 蔡元华, 张巧霞, 胡晓倩, 张济山. 金属学报, 2013; 49: 428)
[20] Sidor J, Petrov R H, Kestens L A I. Mater Sci Eng, 2010; A528: 413
[21] Inoue H, Takasugi T. Mater Trans, 2007; 48: 2014
[22] Hirsch J, Lücke K. Acta Metall, 1988; 36: 2863
[23] Rollett A, Humphreys F J, Rohrer G S, Hatherly M. Recrystallization and Related Annealing Phenomena. 2nd Ed., Amsterdam: Elsevier Ltd, 2004: 408
[24] Bennett T A, Petrov R H, Kestens L A I. Scr Mater, 2010; 62: 78
[25] Benum S, Nes E. Acta Mater, 1997; 45: 4593
[1] CHEN Wenxiong, HU Baojia, JIA Chunni, ZHENG Chengwu, LI Dianzhong. Post-Dynamic Softening of Austenite in a Ni-30%Fe Model Alloy After Hot Deformation[J]. 金属学报, 2020, 56(6): 874-884.
[2] ZHANG Yang, SHAO Jianbo, CHEN Tao, LIU Chuming, CHEN Zhiyong. Deformation Mechanism and Dynamic Recrystallization of Mg-5.6Gd-0.8Zn Alloy During Multi-Directional Forging[J]. 金属学报, 2020, 56(5): 723-735.
[3] HU Yemin,LIAN Xintong,DONG Han. On Silver Nano Particles and Silver-Bearing Materials as Virus and Bacteria Killing Agents[J]. 金属学报, 2020, 56(4): 633-641.
[4] YU Lei,LUO Haiwen. Effect of Partial Recrystallization Annealing on Magnetic Properties and Mechanical Properties of Non-Oriented Silicon Steel[J]. 金属学报, 2020, 56(3): 291-300.
[5] CHENG Chao,CHEN Zhiyong,QIN Xushan,LIU Jianrong,WANG Qingjiang. Microstructure, Texture and Mechanical Property ofTA32 Titanium Alloy Thick Plate[J]. 金属学报, 2020, 56(2): 193-202.
[6] Liping DENG,Kaixuan CUI,Bingshu WANG,Hongliang XIANG,Qiang LI. Microstructure and Texture Evolution of AZ31 Mg Alloy Processed by Multi-Pass Compressing Under Room Temperature[J]. 金属学报, 2019, 55(8): 976-986.
[7] Jialin ZHU,Shifeng LIU,Yu CAO,Yahui LIU,Chao DENG,Qing LIU. Effect of Cross Rolling Cycle on the Deformed and Recrystallized Gradient in High-Purity Tantalum Plate[J]. 金属学报, 2019, 55(8): 1019-1033.
[8] Xin LI,Yuecheng DONG,Zhenhua DAN,Hui CHANG,Zhigang FANG,Yanhua GUO. Corrosion Behavior of Ultrafine Grained Pure Ti Processed by Equal Channel Angular Pressing[J]. 金属学报, 2019, 55(8): 967-975.
[9] Zheng LIU,Jianrong LIU,Zibo ZHAO,Lei WANG,Qingjiang WANG,Rui YANG. Microstructure and Tensile Property of TC4 Alloy Produced via Electron Beam Rapid Manufacturing[J]. 金属学报, 2019, 55(6): 692-700.
[10] Xu LI,Qingbo YANG,Xiangze FAN,Yonglin GUO,Lin LIN,Zhiqing ZHANG. Influence of Deformation Parameters on Dynamic Recrystallization of 2195 Al-Li Alloy[J]. 金属学报, 2019, 55(6): 709-719.
[11] Houlong LIU,Mingyu MA,Lingling LIU,Liangliang WEI,Liqing CHEN. Effect of Hot Band Annealing Processes on Texture and Formability of 19Cr2Mo1W Ferritic Stainless Steel[J]. 金属学报, 2019, 55(5): 566-574.
[12] Yahui DENG,Yinhui YANG,Jianchun CAO,Hao QIAN. Research on Dynamic Recrystallization Behavior of 23Cr-2.2Ni-6.3Mn-0.26N Low Nickel TypeDuplex Stainless Steel[J]. 金属学报, 2019, 55(4): 445-456.
[13] Dechun REN, Huhu SU, Huibo ZHANG, Jian WANG, Wei JIN, Rui YANG. Effect of Cold Rotary-Swaging Deformation on Microstructure and Tensile Properties of TB9 Titanium Alloy[J]. 金属学报, 2019, 55(4): 480-488.
[14] Yubi GAO, Yutian DING, Jianjun CHEN, Jiayu XU, Yuanjun MA, Dong ZHANG. Evolution of Microstructure and Texture During Cold Deformation of Hot-Extruded GH3625 Alloy[J]. 金属学报, 2019, 55(4): 547-554.
[15] Lin ZHANG,Tiannan MAN,Engang WANG. Influence of Dispersed Solid Particles on the Liquid-Liquid Separation Process of Al-Bi Alloys[J]. 金属学报, 2019, 55(3): 399-409.
No Suggested Reading articles found!