|
|
NUMERICAL SIMULATION OF HEAT TRANSFER AND FLUID FLOW IN DOUBLE ELECTRODES TIG ARC-WELD POOL |
WANG Xinxin1, FAN Ding1,2( ), HUANG Jiankang1,2, HUANG Yong1,2 |
1 School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050 2 State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050 |
|
Cite this article:
WANG Xinxin, FAN Ding, HUANG Jiankang, HUANG Yong. NUMERICAL SIMULATION OF HEAT TRANSFER AND FLUID FLOW IN DOUBLE ELECTRODES TIG ARC-WELD POOL. Acta Metall Sin, 2015, 51(2): 178-190.
|
Abstract Based on a developed unified three dimension (3D) mathematical model including two tungsten electrodes arc and weld pool for double electrode TIG arc heat source, the temperature, velocity, current density, magnetic flux and Lorentz force of the double electrodes TIG arc and the weld pool are obtained for SUS304 stainless steel. The simulated results are in fair agreement with the experimental results available. Buoyance, Lorentz force, plasma drag force, Marangoni shear stress and turbulent effect are taken into account to formulate the weld pool behavior and the effects of the each force on the flow of the weld pool are studied respectively. The heat flux and shear stress at the weld pool surface are analyzed as well. A dimensionless number Pe is used to compare the relative importance of convective heat and conductive heat in the weld pool. It is shown that non-axisymmetric double electrode arc results in the non-axisymmetric characteristics of the current density, heat flux, plasma drag force and Marangoni shear at the weld pool, and thus produces non-axisymmetric weld pool profiles. The evolution of the weld pool has little effect on the arc behavior. The plasma drag force of the double tungsten electrode TIG arc decreases significantly compared with that of the TIG arc. The Marangoni stress determines the weld pool flow and the heat convected dominates the heat transfer in the weld pool, their combination effect determines the heat transfer in the weld pool, which is the essential reason for the formation of the different weld pool profiles。
|
Received: 21 July 2014
|
|
Fund: Supported by National Natural Science Foundation of China (Nos.51074084 and 51205179) |
[1] |
Kobayashi K, Nishimura Y, Lijima T, Ushio M, Tanaka M, Shimamura J, Ueno Y, Yamashita M. Weld World, 2004; 48(7/8): 35
|
[2] |
Fan D, Lin T, Huang Y. Trans China Weld Inst, 2008; 29(12): 1
|
|
(樊丁, 林涛, 黄勇. 焊接学报, 2008; 29(12): 1
|
[3] |
Wang X X, Huang Y, Fan D, Yang L, Yan L Q. J Lanzhou Univ Technol, 2013; 39(1): 14
|
|
(王新鑫, 黄勇, 樊丁, 杨磊, 晏丽琴. 兰州理工大学学报, 2013; 39(1): 14)
|
[4] |
Leng X, Zhang G, Wu L. J Phys, 2006; 39D: 1120
|
[5] |
Huang Y, Qu H Y, Fan D, Liu R L, Kang Z X, Wang X X. Trans China Weld Inst, 2013; 34(3): 33
|
|
(黄 勇, 瞿怀宇, 樊 丁, 刘瑞林, 康再祥, 王新鑫. 焊接学报, 2013; 34(3): 33)
|
[6] |
Zhang G, Xiong J, Hu Y. Meas Sci Technol, 2010; 21: 105502
|
[7] |
Zhang G, Xiong J, Gao H, Wu L. J Quant Spectrosc Radiat Transfer, 2012; 113: 1938
|
[8] |
DebRoy T, Davis S A. Rev Mod Phys, 1995; 67: 85
|
[9] |
Zacharia T, David S A, Vitek J M, Kraus H G. Metall Mater Trans, 1991; 22B: 243
|
[10] |
Zacharia T, David S A, Vitek J M. Metall Mater Trans, 1991; 22B: 233
|
[11] |
Wang Y, Shi Q, Tsai H L. Metall Mater Trans, 2001; 32B: 145
|
[12] |
Zhang R H, Fan D. Sci Technol Weld Join, 2007; 12: 15
|
[13] |
Zhang W, Roy G G, Elmer J W, DebRoy T. J Appl Phys, 2003; 93: 3022
|
[14] |
Kim W H, Fan H G, Na S J. Metall Mater Trans, 1997; 28B: 679
|
[15] |
Tsai M C, Kou S. Int J Heat Mass Transfer, 1989; 33: 2089
|
[16] |
Shi Y, Guo C B, Huang J K, Fan D. Acta Phys Sin, 2011; 60: 048102
|
|
(石 玗, 郭朝博, 黄健康, 樊 丁. 物理学报, 2011; 60: 048102)
|
[17] |
Choo R T C, Szekely J, Westhoff R C. Metall Mater Trans, 1992; 23B: 357
|
[18] |
Choo R T C, Szekely J, David S A. Metall Mater Trans, 1992; 23B: 371
|
[19] |
Tanaka M, Terasaki H, Ushio M, Lowke J J. Metall Mater Trans, 2002; 33A: 2043
|
[20] |
Murphy A B, Tanaka M, Yamamoto K, Tashiro S, Sato T, Lowke J J. J Phys, 2009; 42D: 194006
|
[21] |
Lei Y P, Gu X H, Shi Y W, Murakawa H. Acta Metall Sin, 2001; 37: 537
|
|
(雷永平, 顾向华, 史耀武, 川村 英一. 金属学报, 2001; 37: 537)
|
[22] |
Lu F, Tang X, Yu H, Yao S. Comp Mater Sci, 2006; 35: 458
|
[23] |
Lu S P, Dong W C, Li D Z, Li Y Y. Acta Phys Sin, 2009; 58: s94
|
|
(陆善平, 董文超, 李殿中, 李依依. 物理学报, 2009; 58: s94)
|
[24] |
Yin X, Gou J, Zhang J, Sun J. J Phys, 2012; 45D: 285203
|
[25] |
Mougenot J, Gonzalez J J, Freton P, Masquère M. J Phys, 2013; 46D: 135206
|
[26] |
Ogino Y, Hirata Y, Nomura K. J Phys, 2011; 44D: 215202
|
[27] |
Ding X, Li H, Yang L, Gao Y, Wei H. Int J Advan Manuf Technol, 2013; 70: 1867
|
[28] |
Kanemaru S, Sasaki T, Sato T, Mishima H, Tashiro S, Tanaka M. Quart J JWS, 2012; 30: 323
|
|
(金丸周平, 佐タ木智章, 佐藤豊幸, 三島久, 田代真一, 田中学. 溶接学会论文集, 2012; 30: 323)
|
[29] |
Wang X X, Fan D, Huang J K, Huang Y. Acta Phys Sin, 2013; 62: 228101
|
|
(王新鑫, 樊 丁, 黄健康, 黄 勇. 物理学报, 2013; 62: 228101)
|
[30] |
Wang X X, Fan D, Huang J K, Huang Y. J Phys, 2014; 47D: 275202
|
[31] |
Jönsson P G, Murphy A B, Szekely J. Weld J, 1995; 74(2): 48s
|
[32] |
Voller V R, Prakash C. Int J Heat Mass Transfer, 1987; 30: 1709
|
[33] |
Choo R T C, Szekely J. Weld J, 1994; 73(2): s25
|
[34] |
Hong K, Weckman D C, Strong A B, Zheng W. Sci Technol Weld Join, 2002; 7(3): 125
|
[35] |
Goodarzi M, Choo R, Toguri J M. J Phys, 1998; 31D: 569
|
[36] |
Tao W Q. Numerical Heat Transfer. 2nd Ed, Xi'an: Xi'an Jiaotong University Press, 2002: 34
|
|
(陶文铨. 数值传热学. 第二版, 西安: 西安交通大学出版社, 2002: 34)
|
[37] |
Matsuda F, Ushio M, Kumagai T. Trans JWRI, 1986; 15: 13
|
[38] |
Lowke J J, Kovitya P, Schmidt H P. J Phys, 1992; 25D: 1600
|
[39] |
Bini R, Monno M, Boulos M I. J Phys, 2006; 39D: 3253
|
[40] |
Liu Z G. Master Thesis, Lanzhou University of Technology, 2013
|
|
(刘自刚. 兰州理工大学硕士学位论文, 2013)
|
[41] |
Sahoo R, DebRoy T, McNallna M J. Metall Mater Trans, 1987; 19: 483
|
[42] |
Kang Z X. Master Thesis, Lanzhou University of Technology, 2012
|
|
(康再祥. 兰州理工大学硕士学位论文, 2012)
|
[43] |
Wu C S. Welding Thermal Process and Molten Pool Dynamic. Beijing: Mechanical Industry Press, 2008: 123
|
|
(武传松. 焊接热过程与熔池形态. 北京: 机械工业出版社, 2008: 123)
|
[44] |
Wu C S, Ushio M, Tanaka M. Comp Mater Sci, 1999; 15: 302
|
[45] |
Rai R, Roy G G, DebRoy T. J Appl Phys, 2007; 101: 054909
|
[46] |
Heberlein J, Mentel J, Pfender E. J Phys, 2010; 43D: 023001
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|