Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (2): 178-190    DOI: 10.11900/0412.1961.2014.00401
Current Issue | Archive | Adv Search |
NUMERICAL SIMULATION OF HEAT TRANSFER AND FLUID FLOW IN DOUBLE ELECTRODES TIG ARC-WELD POOL
WANG Xinxin1, FAN Ding1,2(), HUANG Jiankang1,2, HUANG Yong1,2
1 School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050
2 State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050
Cite this article: 

WANG Xinxin, FAN Ding, HUANG Jiankang, HUANG Yong. NUMERICAL SIMULATION OF HEAT TRANSFER AND FLUID FLOW IN DOUBLE ELECTRODES TIG ARC-WELD POOL. Acta Metall Sin, 2015, 51(2): 178-190.

Download:  HTML  PDF(7672KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Based on a developed unified three dimension (3D) mathematical model including two tungsten electrodes arc and weld pool for double electrode TIG arc heat source, the temperature, velocity, current density, magnetic flux and Lorentz force of the double electrodes TIG arc and the weld pool are obtained for SUS304 stainless steel. The simulated results are in fair agreement with the experimental results available. Buoyance, Lorentz force, plasma drag force, Marangoni shear stress and turbulent effect are taken into account to formulate the weld pool behavior and the effects of the each force on the flow of the weld pool are studied respectively. The heat flux and shear stress at the weld pool surface are analyzed as well. A dimensionless number Pe is used to compare the relative importance of convective heat and conductive heat in the weld pool. It is shown that non-axisymmetric double electrode arc results in the non-axisymmetric characteristics of the current density, heat flux, plasma drag force and Marangoni shear at the weld pool, and thus produces non-axisymmetric weld pool profiles. The evolution of the weld pool has little effect on the arc behavior. The plasma drag force of the double tungsten electrode TIG arc decreases significantly compared with that of the TIG arc. The Marangoni stress determines the weld pool flow and the heat convected dominates the heat transfer in the weld pool, their combination effect determines the heat transfer in the weld pool, which is the essential reason for the formation of the different weld pool profiles。

Key words:  double electrode      numerical simulation      heat transfer      non-axisymmetric      dimensionless number     
Received:  21 July 2014     
ZTFLH:  TG402  
Fund: Supported by National Natural Science Foundation of China (Nos.51074084 and 51205179)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00401     OR     https://www.ams.org.cn/EN/Y2015/V51/I2/178

Fig.1  Schematic of computation domain and boundary conditions
Area v / (m·s-1) T / K ?? Φ / V A / (Wb·m-1)
A v z = v ( x , y ) T=T(x, y) ? Φ ? n = 0 ? A ? n = 0
B ? ( ρ v ) ? n = 0 ? T ? n = 0 ? Φ ? n = 0 A=0
C - Eq.(18) ? Φ ? n = 0 A=0
D - Eq.(18) 0 ? A ? n = 0
E - 1800 - σ e ? Φ ? z = I π r c 2 ? A ? n = 0
Table 1  Boundary conditions
Parameter Value Unit
Radiative emissivity er 0.4
Boltzmann constant kB 1.381×10-23 J·K-1
elementary charge e 1.6×10-19 C
Stefan-Boltzmann constant s 5.67×10-8 W·m-2·K-4
Permeability m0 4p×10-7 H·m-1
Latent heat L 2.47×105 J·kg-1
Ambient temperature T 300 K
Solidus temperature Ts 1673 K
Liquidus temperature Tl 1723 K
Density r 7200 kg·m-3
Thermal expansion coefficient β 10-4 K-1
Convection heat transfer coefficient hc 80 W·m-2·K-1
Table 2  Physical parameters used in the model[19,25,43]
Fig.2  Temperature and flow fields in xz section (a, c) and yz section (b, d) of arc plasma and weld pool with pure Ar shielding (a, b) and Ar+O2 shielding (c, d) after spot welding for 2 s (T—temperature; F—voltage drop; Tm and vm—maximum temperature and velocity, respectively)
Fig.3  Distributions of current density (a) and Lorentz force (b) of the arc and weld pool in xz section
Fig.4  Temperature and flow fields (a) and magnetic flux (b) at a location about 0.15 mm above the anode
Fig.5  Temperature fields at the anode surface (xy section) with pure Ar shielding (a) and Ar+O2 shielding (b) after spot welding for 2 s (Isotherms are in the unit of K)
Fig.6  Temperature distributions in x and y directions at the anode surface (xy section) with pure Ar shielding (a) and Ar+O2 shielding (b) after spot welding for 2 s (Wx and Wy —weld widths in x direction and y direction; d— position in x or y directions )
Fig.7  Current density and heat flux distributions in x direction (a) and y direction (b) at the anode surface (qe and qc are heat flux to the anode due to the electron absorption and the heat conduction, respectively; qa is the total heat flux to the anode; jz is the component of the current density in z direction)
Fig.8  Shear stresses in x direction (a, c) and y direction (b, d) at the weld pool surface with pure Ar shielding (a, b) and Ar+O2 shielding (c, d) about 2 s later after arc ignition (t—shear stress, tp—plasma drag force, tM—Marangoni shear stress, tp+tM—total shear stress)
Fig.9  Weld pool flows at xz sections (a, c, e, g, i) and yz sections (b, d, f, h, j) driven by buoyance (a, b), Lorentz force (c, d), surface tension ∂g /∂T<0 (e, f), surface tension ∂g /∂T>0 (g, h) and plasma drag force (i, j)
Fig.10  Weld pool geometry (a) and maximum velocity driven (b) by various forces (vm—maximum velocity in the weld pool, D—weld depth, W—weld width, Wx and Wy —weld widths in x and y directions)
Fig.11  Variations of weld pool geometry (a) and maximas of heat flux and current density at the anode (b) with time (t)
Fig.12  Photographs of double electrodes TIG arc in xz section (a) and yz section (b)
Fig.13  Comparison between simulated and experimental weld pool profiles at xz section (a, c) and yz section (b, d) for pure Ar shielding (a, b) and Ar+O2 shielding (c, d)
Fig.14  Comparison between simulated and experimental weld pool geometries
[1] Kobayashi K, Nishimura Y, Lijima T, Ushio M, Tanaka M, Shimamura J, Ueno Y, Yamashita M. Weld World, 2004; 48(7/8): 35
[2] Fan D, Lin T, Huang Y. Trans China Weld Inst, 2008; 29(12): 1
(樊丁, 林涛, 黄勇. 焊接学报, 2008; 29(12): 1
[3] Wang X X, Huang Y, Fan D, Yang L, Yan L Q. J Lanzhou Univ Technol, 2013; 39(1): 14
(王新鑫, 黄勇, 樊丁, 杨磊, 晏丽琴. 兰州理工大学学报, 2013; 39(1): 14)
[4] Leng X, Zhang G, Wu L. J Phys, 2006; 39D: 1120
[5] Huang Y, Qu H Y, Fan D, Liu R L, Kang Z X, Wang X X. Trans China Weld Inst, 2013; 34(3): 33
(黄 勇, 瞿怀宇, 樊 丁, 刘瑞林, 康再祥, 王新鑫. 焊接学报, 2013; 34(3): 33)
[6] Zhang G, Xiong J, Hu Y. Meas Sci Technol, 2010; 21: 105502
[7] Zhang G, Xiong J, Gao H, Wu L. J Quant Spectrosc Radiat Transfer, 2012; 113: 1938
[8] DebRoy T, Davis S A. Rev Mod Phys, 1995; 67: 85
[9] Zacharia T, David S A, Vitek J M, Kraus H G. Metall Mater Trans, 1991; 22B: 243
[10] Zacharia T, David S A, Vitek J M. Metall Mater Trans, 1991; 22B: 233
[11] Wang Y, Shi Q, Tsai H L. Metall Mater Trans, 2001; 32B: 145
[12] Zhang R H, Fan D. Sci Technol Weld Join, 2007; 12: 15
[13] Zhang W, Roy G G, Elmer J W, DebRoy T. J Appl Phys, 2003; 93: 3022
[14] Kim W H, Fan H G, Na S J. Metall Mater Trans, 1997; 28B: 679
[15] Tsai M C, Kou S. Int J Heat Mass Transfer, 1989; 33: 2089
[16] Shi Y, Guo C B, Huang J K, Fan D. Acta Phys Sin, 2011; 60: 048102
(石 玗, 郭朝博, 黄健康, 樊 丁. 物理学报, 2011; 60: 048102)
[17] Choo R T C, Szekely J, Westhoff R C. Metall Mater Trans, 1992; 23B: 357
[18] Choo R T C, Szekely J, David S A. Metall Mater Trans, 1992; 23B: 371
[19] Tanaka M, Terasaki H, Ushio M, Lowke J J. Metall Mater Trans, 2002; 33A: 2043
[20] Murphy A B, Tanaka M, Yamamoto K, Tashiro S, Sato T, Lowke J J. J Phys, 2009; 42D: 194006
[21] Lei Y P, Gu X H, Shi Y W, Murakawa H. Acta Metall Sin, 2001; 37: 537
(雷永平, 顾向华, 史耀武, 川村 英一. 金属学报, 2001; 37: 537)
[22] Lu F, Tang X, Yu H, Yao S. Comp Mater Sci, 2006; 35: 458
[23] Lu S P, Dong W C, Li D Z, Li Y Y. Acta Phys Sin, 2009; 58: s94
(陆善平, 董文超, 李殿中, 李依依. 物理学报, 2009; 58: s94)
[24] Yin X, Gou J, Zhang J, Sun J. J Phys, 2012; 45D: 285203
[25] Mougenot J, Gonzalez J J, Freton P, Masquère M. J Phys, 2013; 46D: 135206
[26] Ogino Y, Hirata Y, Nomura K. J Phys, 2011; 44D: 215202
[27] Ding X, Li H, Yang L, Gao Y, Wei H. Int J Advan Manuf Technol, 2013; 70: 1867
[28] Kanemaru S, Sasaki T, Sato T, Mishima H, Tashiro S, Tanaka M. Quart J JWS, 2012; 30: 323
(金丸周平, 佐タ木智章, 佐藤豊幸, 三島久, 田代真一, 田中学. 溶接学会论文集, 2012; 30: 323)
[29] Wang X X, Fan D, Huang J K, Huang Y. Acta Phys Sin, 2013; 62: 228101
(王新鑫, 樊 丁, 黄健康, 黄 勇. 物理学报, 2013; 62: 228101)
[30] Wang X X, Fan D, Huang J K, Huang Y. J Phys, 2014; 47D: 275202
[31] Jönsson P G, Murphy A B, Szekely J. Weld J, 1995; 74(2): 48s
[32] Voller V R, Prakash C. Int J Heat Mass Transfer, 1987; 30: 1709
[33] Choo R T C, Szekely J. Weld J, 1994; 73(2): s25
[34] Hong K, Weckman D C, Strong A B, Zheng W. Sci Technol Weld Join, 2002; 7(3): 125
[35] Goodarzi M, Choo R, Toguri J M. J Phys, 1998; 31D: 569
[36] Tao W Q. Numerical Heat Transfer. 2nd Ed, Xi'an: Xi'an Jiaotong University Press, 2002: 34
(陶文铨. 数值传热学. 第二版, 西安: 西安交通大学出版社, 2002: 34)
[37] Matsuda F, Ushio M, Kumagai T. Trans JWRI, 1986; 15: 13
[38] Lowke J J, Kovitya P, Schmidt H P. J Phys, 1992; 25D: 1600
[39] Bini R, Monno M, Boulos M I. J Phys, 2006; 39D: 3253
[40] Liu Z G. Master Thesis, Lanzhou University of Technology, 2013
(刘自刚. 兰州理工大学硕士学位论文, 2013)
[41] Sahoo R, DebRoy T, McNallna M J. Metall Mater Trans, 1987; 19: 483
[42] Kang Z X. Master Thesis, Lanzhou University of Technology, 2012
(康再祥. 兰州理工大学硕士学位论文, 2012)
[43] Wu C S. Welding Thermal Process and Molten Pool Dynamic. Beijing: Mechanical Industry Press, 2008: 123
(武传松. 焊接热过程与熔池形态. 北京: 机械工业出版社, 2008: 123)
[44] Wu C S, Ushio M, Tanaka M. Comp Mater Sci, 1999; 15: 302
[45] Rai R, Roy G G, DebRoy T. J Appl Phys, 2007; 101: 054909
[46] Heberlein J, Mentel J, Pfender E. J Phys, 2010; 43D: 023001
[1] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[3] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[4] PENG Zhiqiang, LIU Qian, GUO Dongwei, ZENG Zihang, CAO Jianghai, HOU Zibing. Independent Change Law of Mold Heat Transfer in Continuous Casting Based on Big Data Mining[J]. 金属学报, 2023, 59(10): 1389-1400.
[5] XIA Dahai, DENG Chengman, CHEN Ziguang, LI Tianshu, HU Wenbin. Modeling Localized Corrosion Propagation of Metallic Materials by Peridynamics: Progresses and Challenges[J]. 金属学报, 2022, 58(9): 1093-1107.
[6] HU Long, WANG Yifeng, LI Suo, ZHANG Chaohua, DENG Dean. Study on Computational Prediction About Microstructure and Hardness of Q345 Steel Welded Joint Based on SH-CCT Diagram[J]. 金属学报, 2021, 57(8): 1073-1086.
[7] LI Zihan, XIN Jianwen, XIAO Xiao, WANG Huan, HUA Xueming, WU Dongsheng. The Arc Physical Characteristics and Molten Pool Dynamic Behaviors in Conduction Plasma Arc Welding[J]. 金属学报, 2021, 57(5): 693-702.
[8] TANG Haiyan, LIU Jinwen, WANG Kaimin, XIAO Hong, LI Aiwu, ZHANG Jiaquan. Progress and Perspective of Functioned Continuous Casting Tundish Through Heating and Temperature Control[J]. 金属学报, 2021, 57(10): 1229-1245.
[9] WANG Fuqiang, LIU Wei, WANG Zhaowen. Effect of Local Cathode Current Increasing on Bath-Metal Two-Phase Flow Field in Aluminum Reduction Cells[J]. 金属学报, 2020, 56(7): 1047-1056.
[10] LIU Jizhao, HUANG Hefei, ZHU Zhenbo, LIU Awen, LI Yan. Numerical Simulation of Nanohardness in Hastelloy N Alloy After Xenon Ion Irradiation[J]. 金属学报, 2020, 56(5): 753-759.
[11] WANG Bo,SHEN Shiyi,RUAN Yanwei,CHENG Shuyong,PENG Wangjun,ZHANG Jieyu. Simulation of Gas-Liquid Two-Phase Flow in Metallurgical Process[J]. 金属学报, 2020, 56(4): 619-632.
[12] XU Qingyan,YANG Cong,YAN Xuewei,LIU Baicheng. Development of Numerical Simulation in Nickel-Based Superalloy Turbine Blade Directional Solidification[J]. 金属学报, 2019, 55(9): 1175-1184.
[13] Peiyuan DAI,Xing HU,Shijie LU,Yifeng WANG,Dean DENG. Influence of Size Factor on Calculation Accuracy of Welding Residual Stress of Stainless Steel Pipe by 2D Axisymmetric Model[J]. 金属学报, 2019, 55(8): 1058-1066.
[14] ZHANG Qingdong, LIN Xiao, LIU Jiyang, HU Shushan. Modelling of Q&P Steel Heat Treatment Process Based on Finite Element Method[J]. 金属学报, 2019, 55(12): 1569-1580.
[15] LU Shijie, WANG Hu, DAI Peiyuan, DENG Dean. Effect of Creep on Prediction Accuracy and Calculating Efficiency of Residual Stress in Post Weld Heat Treatment[J]. 金属学报, 2019, 55(12): 1581-1592.
No Suggested Reading articles found!