Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (2): 159-168    DOI: 10.11900/0412.1961.2014.00334
Current Issue | Archive | Adv Search |
THREE-DIMENSIONAL IMAGING OF GAS PORES IN FUSION WELDED Al ALLOYS BY SYNCHROTRON RADIATION X-RAY MICROTOMOGRAPHY
YU Cheng1, WU Shengchuan1,3(), HU Yanan1, ZHANG Weihua1, FU Yanan2
1 State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031
2 Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204
3 European Synchrotron Radiation Facility (ESRF), Grenoble F-38043, France
Cite this article: 

YU Cheng, WU Shengchuan, HU Yanan, ZHANG Weihua, FU Yanan. THREE-DIMENSIONAL IMAGING OF GAS PORES IN FUSION WELDED Al ALLOYS BY SYNCHROTRON RADIATION X-RAY MICROTOMOGRAPHY. Acta Metall Sin, 2015, 51(2): 159-168.

Download:  HTML  PDF(4056KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Large numbers of complicatedly distributed gas pores are inevitably formed during the hybrid fusion welding of aluminum alloys because of the sharp reduction of supersaturated hydrogen. However, there is no consistent and explicit view on how these gas pores are distributed and influence the static and fatigue property of welded aluminum joints. In this work, pores in hybrid welded 7020-T651 were characterized by high-resolution synchrotron radiation X-ray computed microtomography. The volume, sphericity, flatness and distance of pores centroid to free surface of samples were statistically measured and fitted. From the 3D characterization, micropores inside hybrid welds are mainly metallurgical pores, which are symmetrically distributed about the seam centerline, giving a mean sphericity larger than 0.65. Moreover, pores inside upper welds appear to be larger in effective diameter and denser in heat affected zone and lower welds. Besides, there are numerous pores with diameter less than 20 μm, with a frequency of 65% and 85% in the upper and lower weld, respectively. It seems that hot cracks with complicated morphology form in the lower weld due to shrinkage and rapid solidification of the molten pool. Furthermore, it is found that the connections of a few pore-pore and pore-hot-crack together with the hot cracks result in the smaller sphericity of gas pores in the lower welds. Finally it can be indicated that the higher welding speed gives rise to the smaller pore volume fraction, but has little influence on the distribution of pore position and sphericity。

Key words:  hybrid laser welding      aluminum alloy      gas pore      synchrotron radiation X-ray imaging     
Received:  23 June 2014     
ZTFLH:  TG115.28  
Fund: Supported by National Natural Science Foundation of China (No.51005068), Fundamental Research Fund for the Central Universities (No.2682013CX030) and Fundamental Joint Research Fund for the High Speed Railway of China (No.U1234208)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00334     OR     https://www.ams.org.cn/EN/Y2015/V51/I2/159

Sample Speed / (mmin-1) Sampled
No. location
T1 6 Top half
B1 6 Bottom half
T2 9 Top half
B2 9 Bottom half
Table 1  Welding speed and sampled location
Fig.1  Schematic of synchrotron radiation X-ray imaging
Fig.2  3D rendering of micro pores (a, c, e, g) and the area fraction in slices along the longitudinal axis (b, d, f, h) inside hybrid weld samples T1 (a, b), B1 (c, d), T2 (e, f) and B2 (g, h)
Fig.3  Transversal thermal cracks inside lower welds
Fig.4  Fractured and linked gas pores
Sample No. Number of pore Volume fraction
%
Max. eff. diameter
μm
Mean volume mm3 Mean sphericity Max. area fraction
%
B1 5422 0.46 81.76 1449.6 0.6383 3.03
B2 3007 0.25 86.58 1304.6 0.6455 1.01
T1 1318 0.32 118.89 6117.9 0.6758 2.35
T2 2391 0.22 111.69 4574.5 0.6619 1.76
Table 2  Statistical analysis of gas pores for all samples
Fig.5  Distributions of effective diameter of pores and their lognormal curves fitting inside hybrid weld samples T1 (a), B1 (b), T2 (c) and B2 (d) (y0, xc, A—scale parameters; w—shape parameter; R2—goodness of fit)
Fig.6  Distributions of sphericity of pores and their modified lognormal curves fitting inside hybrid weld samples T1 (a), B1 (b), T2 (c) and B2 (d) (x0—scale parameter)
Fig.7  Distance to free surface of pores and their Voigt profile functions fitting inside hybrid weld samples T1 (a), B1 (b), T2 (c) and B2 (d) (n—the number of peaks; Ai—area of the ith peak; WLi, WGi—full width at half maximum of the ith peak for Lorentz and Gauss composition, respectively; xci—central position of the ith peak; yb—base line position)
Fig.8  Relationships between sphericity and effective diameter (a), sphericity and the distance to free surface (b) and the distance to free surface and effective diameter (c)
Fig.9  Gas micro pores and hot cracks within hybrid welds

(a) individual pore

(b) linked pores

(c, d) linked thermal cracks

Fig.10  Scatter of sphericity and flatness
[1] Wu S C,Zhu Z T,Li X W. Laser Welding of Aluminium Alloys and the Performance Evaluation. Beijing: National Defense Industry Press, 2014: 234
(吴圣川,朱宗涛,李向伟. 铝合金的激光焊接及性能评价. 北京: 国防工业出版社, 2014: 234)
[2] Gong S L, Yao W, Steve S. Trans Chin Weld Inst, 2009; 30(1): 60
(巩水利, 姚 伟, Steve S. 焊接学报, 2009; 30(1): 60)
[3] Mathers G. The Welding of Aluminum and Its Alloys. Cambridge: Woodhead Publishing Limited, 2002: 18
[4] Wu S C, Yu X, Zuo R Z, Zhang W H, Xie H L, Jiang J Z. Weld J, 2013; 92: 64
[5] Li X Y, Gong S L, Zhang J X. J Mech Strength, 2008; 30: 965
(李晓延, 巩水利, 张建勋. 机械强度, 2008; 30: 965)
[6] Rudy J F, Rupert E J. Weld J, 1970; 49: 322
[7] Shore R J, McCauley R B. Weld J, 1970; 49: 311
[8] Ma J M, Li J Y. Dev Appl Mater, 2003; 18(6): 31
(马建民, 李敬勇. 材料开发与应用, 2003; 18(6): 31)
[9] Zhang M Y. Master Thesis, Southwest Jiaotong University, Chengdu, 2013
(张明月. 西南交通大学硕士学位论文, 成都, 2013)
[10] Wang S G, Wang S C, Zhang L. Acta Metall Sin, 2013; 49: 897
(王绍刚, 王苏程, 张 磊. 金属学报, 2013; 49: 897)
[11] Yonetani H. Weld Int, 2008; 22: 701
[12] Wang Y J. Welding Technique for Aluminum High-Speed Train Body. 2nd Ed., Beijing: China Machine Press, 2011: 43
(王炎金. 铝合金车体焊接工艺. 第二版, 北京: 机械工业出版社, 2011: 43)
[13] Wang Y L,Chen H. Aluminum Welding Technology of High Speed Train Body. Chengdu: Southwest Jiaotong University Press, 2012: 81
(王元良,陈 辉. 高速列车铝合金车体的焊接技术. 成都: 西南交通大学出版社, 2012: 81)
[14] Mizutani M, Yamaguchi Y, Katayama S. Weld Int, 2008; 22: 705
[15] Andrew R C, Waring J. Weld J, 1974; 53: 85
[16] Wan Q, Zhao H D, Zou C. Acta Metall Sin, 2013; 49: 284
(万谦, 赵海东, 邹纯. 金属学报, 2013; 49: 284)
[17] Li Y J. Quality Control of Microstructures and Performance for Welded Joints. Beijing: Chemical Industry Press, 2005: 213
(李亚江. 焊接组织性能与质量控制. 北京: 化学工业出版社, 2005: 213)
[18] Zhou W S,Yao J S. Welding Aluminum and Its Alloy. Beijing: China Machine Press, 2007: 48
(周万盛,姚君山. 铝及铝合金的焊接. 北京: 机械工业出版社, 2007: 48)
[19] Zuo T C. Laser Processing of High Strength Aluminum Alloys. 2nd Ed., Beijing: National Defense Industry Press, 2008: 22
(左铁钏. 高强铝合金的激光加工. 第二版, 北京: 国防工业出版社, 2008: 22)
[20] Huang J L, Warnken N, Gebelin J C, Strangwood M, Reed R C. Acta Mater, 2012; 60: 3215
[21] Wu S C, Yu C, Zhang W H, Fu Y N, Helfen L. Sci Technol Weld Join, 2015; 20: 11
[22] Toda H, Masuda S, Batres R, Kobayashi M, Aoyama S, Onodera M, Furusawa R, Uesugi K, Takeuchi A, Suzuki Y. Acta Mater, 2011; 59: 4990
[23] Ma L D. Modern X-ray Polycrystalline Diffraction: Experimental Technique and Data Analysis. Beijing: Chemical Industry Press, 2004: 318
(马礼敦. 近代X射线多晶体衍射: 实验技术与数据分析. 北京: 化学工业出版社, 2004: 318)
[24] Zhang Q L, Ding L H, Shao S F, Liu W P, Wang X M, Sun D L, Yin S T. J Synth Cryst, 2009; 38: 330
(张庆礼, 丁丽华, 邵淑芳, 刘文鹏, 王晓梅, 孙敦陆, 殷绍唐. 人工晶体学报, 2009; 38: 330)
[25] Derek H. Fractography: Observing, Measuring and Interpreting Fracture Surface Topography. Lundon: Cambridge University Press, 1999: 153
[26] Wu S C, Zhang W H, Jiao H S, Fu Y N. Sci Sin Techologica, 2013; 43: 785
(吴圣川, 张卫华, 焦汇胜, 付亚楠. 中国科学: 技术科学, 2013; 43: 785)
[1] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[2] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
[3] GAO Jianbao, LI Zhicheng, LIU Jia, ZHANG Jinliang, SONG Bo, ZHANG Lijun. Current Situation and Prospect of Computationally Assisted Design in High-Performance Additive Manufactured Aluminum Alloys: A Review[J]. 金属学报, 2023, 59(1): 87-105.
[4] MA Zhimin, DENG Yunlai, LIU Jia, LIU Shengdan, LIU Honglei. Effect of Quenching Rate on Stress Corrosion Cracking Susceptibility of 7136 Aluminum Alloy[J]. 金属学报, 2022, 58(9): 1118-1128.
[5] SONG Wenshuo, SONG Zhuman, LUO Xuemei, ZHANG Guangping, ZHANG Bin. Fatigue Life Prediction of High Strength Aluminum Alloy Conductor Wires with Rough Surface[J]. 金属学报, 2022, 58(8): 1035-1043.
[6] WANG Chunhui, YANG Guangyu, ALIMASI Aredake, LI Xiaogang, JIE Wanqi. Effect of Printing Parameters of 3DP Sand Mold on the Casting Performance of ZL205A Alloy[J]. 金属学报, 2022, 58(7): 921-931.
[7] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[8] TIAN Ni, SHI Xu, LIU Wei, LIU Chuncheng, ZHAO Gang, ZUO Liang. Effect of Pre-Tension on the Fatigue Fracture of Under-Aged 7N01 Aluminum Alloy Plate[J]. 金属学报, 2022, 58(6): 760-770.
[9] SU Kaixin, ZHANG Jiwang, ZHANG Yanbin, YAN Tao, LI Hang, JI Dongdong. High-Cycle Fatigue Properties and Residual Stress Relaxation Mechanism of Micro-Arc Oxidation 6082-T6 Aluminum Alloy[J]. 金属学报, 2022, 58(3): 334-344.
[10] WANG Guanjie, LI Kaiqi, PENG Liyu, ZHANG Yiming, ZHOU Jian, SUN Zhimei. High-Throughput Automatic Integrated Material Calculations and Data Management Intelligent Platform and the Application in Novel Alloys[J]. 金属学报, 2022, 58(1): 75-88.
[11] ZHAO Wanchen, ZHENG Chen, XIAO Bin, LIU Xing, LIU Lu, YU Tongxin, LIU Yanjie, DONG Ziqiang, LIU Yi, ZHOU Ce, WU Hongsheng, LU Baokun. Composition Refinement of 6061 Aluminum Alloy Using Active Machine Learning Model Based on Bayesian Optimization Sampling[J]. 金属学报, 2021, 57(6): 797-810.
[12] SUN Jiaxiao, YANG Ke, WANG Qiuyu, JI Shanlin, BAO Yefeng, PAN Jie. Microstructure and Mechanical Properties of 5356 Aluminum Alloy Fabricated by TIG Arc Additive Manufacturing[J]. 金属学报, 2021, 57(5): 665-674.
[13] LIU Gang, ZHANG Peng, YANG Chong, ZHANG Jinyu, SUN Jun. Aluminum Alloys: Solute Atom Clusters and Their Strengthening[J]. 金属学报, 2021, 57(11): 1484-1498.
[14] LI Jichen, FENG Di, XIA Weisheng, LIN Gaoyong, ZHANG Xinming, REN Minwen. Effect of Non-Isothermal Ageing on Microstructure and Properties of 7B50 Aluminum Alloy[J]. 金属学报, 2020, 56(9): 1255-1264.
[15] GAO Bowen, WANG Meihan, YAN Maocheng, ZHAO Hongtao, WEI Yinghua, LEI Hao. Electrochemical Preparation and Corrosion Resistance of PEDOT Coatings on Surface of 2024 Aluminum Alloy[J]. 金属学报, 2020, 56(11): 1541-1550.
No Suggested Reading articles found!