Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (5): 523-529    DOI: 10.3724/SP.J.1037.2013.00036
Current Issue | Archive | Adv Search |
NUMERICAL SIMULATION OF RECRYSTALLIZATION PROCESS OF NICKEL BASE SINGLE CRYSTAL SUPERALLOY
WU Chunlong1), XU Qingyan1), XIONG Jichun2), LI Zhonglin1), LI Jiarong2),LIU Baicheng1)
1) School of Materials Science and Engineering, Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Tsinghua University, Beijing 100084
2) Science and Technology on Advanced High Temperature Structural Materials Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095
Cite this article: 

WU Chunlong, XU Qingyan, XIONG Jichun, LI Zhonglin, LI Jiarong,LIU Baicheng. NUMERICAL SIMULATION OF RECRYSTALLIZATION PROCESS OF NICKEL BASE SINGLE CRYSTAL SUPERALLOY. Acta Metall Sin, 2013, 49(5): 523-529.

Download:  PDF(1856KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The formation of recrystallization can cause great damage on the performance of nickel base single crystal superalloy turbine blade. The stress, strain and stored energy distribution of single crystal superalloy were modeled and simulated under the condition of inhomogeneous deformation. The critical stored energy was established which takes the anisotropic mechanical properties of single crystal superalloy and the recrystallization grain boundary migration process into account. Based on the calculation of the critical stored energy, the recrystallization microstructure in the local deformation zone after heat treatment was simulated by using cellular automaton (CA) method. DD6 single crystal test bars were treated by the cold deformation process and then annealed at the temperature of 1280 ℃ for 30, 60 and 240 min. The experimental results showed that the recrystallization occurred on the surface near the deformation area. The recrystallization area and the grain size increased gradually with time. The simulated microstructure results  agree well with the experimental ones (EBSD) and indicate that the recrystallization process of single crystal superalloy can be well simulated by the proposed model.

Key words:  single crystal superalloy      recrystallization      stress and deformation      numerical simulation     
Received:  21 January 2013     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00036     OR     https://www.ams.org.cn/EN/Y2013/V49/I5/523

[1] Schafrik R, Sprague R.  Adv Mater Processes, 2004; 162(5): 29


[2] Reed R C.  The Superalloys: Fundamentals and Applications. Cambridge: Cambridge University Press, 2006: 1

[3] Zambaldi C, Roters F, Raabe D, Glatzel U.  Mater Sci Eng, 2007; A454-455: 433

[4] Zhang Y Q, Jiang S Y, Liang Y L, Hu L.  Comput Mater Sci, 2013; 71: 124

[5] Janssens K G F.  Modell Simul Mater Sci Eng, 2003; 11: 157

[6] Hesselbarth H W, Gobel I R.  Acta Metall Mater, 1991; 39: 2135

[7] Yazdipour N, Davies C H J, Hodgson P D.  Comput Mater Sci, 2008; 44: 566

[8] Marx V, Reher F R, Gottstein G.  Acta Mater, 1999; 47: 1219

[9] Panwisawas P, Mathur H, Gebelin J C, Putman C, Rae C M F, Reed R C.  Acta Mater, 2012; 61: 51

[10] Xiong J C, Li J R, Liu S Z, Han M.  Chin J Nonferrous Met, 2010; 7: 1328

(熊继春, 李嘉荣, 刘世忠, 韩梅. 中国有色金属学报, 2010; 7: 1328)

[11] Takaki T, Tomita Y.  Int J Mech Sci, 2010; 52: 320

[12] Mohamed G, Bacroix B.  Acta Mater, 2000; 48: 3295

[13] Xiong J C, Li J R, Liu S Z, Zhao J Q, Han M.  Mater Charact, 2010; 61: 749

[14] Li J R, Xiong J C, Tang D Z.  Advanced High Temperature Structural Materials and Technology.Beijing: National Defense Industry Press, 2012: 177

(李嘉荣, 熊继春, 唐定中. 先进高温结构材料与技术. 北京: 国防工业出版社, 2012: 177)

[15] Schafer C, Mohles V, Gottstein G.  Acta Mater, 2011; 59: 6574

[16] Zheng C W, Lan Y J, Xiao N M, Li D Z, Li Y Y.  Acta Metall Sin, 2006; 42: 474

(郑成武, 兰永军, 肖纳敏, 李殿中, 李依依. 金属学报, 2006; 42: 474)

[17] Zhou S Y.  Shanghai Met (Nonferrous Fasc), 1991; 12(2): 50

(周善佑. 上海金属(有色分册), 1991; 12(2): 50)

[18] Raabe D, Becker R C.  Modell Simul Mater Sci Eng, 2000; 8: 445

[19] Zhang Y B, Godfrey A, Jensen D J.  Scr Mater, 2011; 64: 331

[20] Pan D.  PhD Dissertation, Tsinghua University, Beijing, 2010

(潘冬. 清华大学博士学位论文, 北京, 2010)

[21] Li J R, Zhao J Q, Liu S Z, Han M. In: Reed R C, Green K A, Caron P, Gabb T P, Fahrmann M G,Huron E S eds., Proc 11th Int Symposium on Superalloys. Champion, PA: Minerals,Metals & Materials Soc, 2008: 443

[22] Yu Q M.  Master Thesis, Northwestern Polytechnical University, Xi'an, 2005

(于庆民. 西北工业大学硕士学位论文, 西安, 2005)

[23] Li C.  Theory of Metals. Harbin: Harbin Institute of Technology Press, 1996: 298

(李超. 金属学原理. 哈尔滨: 哈尔滨工业大学出版社, 1996: 298)

[24] Ye W P, Gall R L, Saindrenan G.Mater Sci Eng, 2002; A332: 41

[25] Radhakrishnan B, Sarma G B, Zacharia T.Acta Mater, 1998; 46: 4415

[1] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[4] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[6] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[7] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[8] WANG Di, HE Lili, WANG Dong, WANG Li, ZHANG Siqian, DONG Jiasheng, CHEN Lijia, ZHANG Jian. Influence of Pt-Al Coating on Tensile Properties of DD413 Alloy at High Temperatures[J]. 金属学报, 2023, 59(3): 424-434.
[9] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[10] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[11] ZHANG Zixuan, YU Jinjiang, LIU Jinlai. Anisotropy of Stress Rupture Property of Ni Base Single Crystal Superalloy DD432[J]. 金属学报, 2023, 59(12): 1559-1567.
[12] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[13] XIA Dahai, DENG Chengman, CHEN Ziguang, LI Tianshu, HU Wenbin. Modeling Localized Corrosion Propagation of Metallic Materials by Peridynamics: Progresses and Challenges[J]. 金属学报, 2022, 58(9): 1093-1107.
[14] WU Caihong, FENG Di, ZANG Qianhao, FAN Shichun, ZHANG Hao, LEE Yunsoo. Microstructure Evolution and Recrystallization Behavior During Hot Deformation of Spray Formed AlSiCuMg Alloy[J]. 金属学报, 2022, 58(7): 932-942.
[15] REN Shaofei, ZHANG Jianyang, ZHANG Xinfang, SUN Mingyue, XU Bin, CUI Chuanyong. Evolution of Interfacial Microstructure of Ni-Co Base Superalloy During Plastic Deformation Bonding and Its Bonding Mechanism[J]. 金属学报, 2022, 58(2): 129-140.
No Suggested Reading articles found!