Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (7): 867-874    DOI: 10.3724/SP.J.1037.2012.00187
论文 Current Issue | Archive | Adv Search |
MICROSTRUCTURE AND MECHANICAL PROPERTIES EVOLUTIONS OF CONTINUOUS COLUMNAR-GRAINED CuAlNi ALLOY WIRES DURING DIELESS DRAWING PROCESS
WANG Zhen, LIU Xuefeng, XIE Jianxin
Key Laboratory for Advanced Materials Processing (MOE), University of Science and Technology Beijing, Beijing 100083
Cite this article: 

WANG Zhen LIU Xuefeng XIE Jianxin. MICROSTRUCTURE AND MECHANICAL PROPERTIES EVOLUTIONS OF CONTINUOUS COLUMNAR-GRAINED CuAlNi ALLOY WIRES DURING DIELESS DRAWING PROCESS. Acta Metall Sin, 2012, 48(7): 867-874.

Download:  PDF(5699KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Dieless drawing experiments of continuous columnar-grained Cu-14.0%Al-3.8%Ni (mass fraction) alloy wires were carried out at drawing speeds of 0.8-1.1 mm/s and deformation temperatures of 650-900 ℃, when the feeding speed and distance between the heating and the cooling sources kept invariant at 0.50 mm/s and 15 mm, respectively. Effects of dieless drawing parameters on the microstructure and mechanical properties of the alloy were investigated, and the mechanism of microstructure and mechanical properties evolutions of the deformed alloy was discussed. It was found that the straight continuous columnar-grained boundaries of the alloy wires evolved into regular small zigzag, disordered large zigzag and recrystallized boundaries. When the deformation temperature was 650 ℃ and the drawing speed was 0.8 and 0.9 mm/s, the alloy remained continuous columnar grains with straight boundaries after dieless drawing, while the straight columnar-grained boundaries gradually transformed into zigzag boundaries with the deformation temperature and drawing speed increasing. When the drawing speed was 0.9 mm/s and the deformation temperature up to 850 ℃, the alloy exhibited obviously incomplete dynamic recrystallized microstructure characteristic, $i.e$. the original columnar grains were elongated along the deformation direction, and small dynamic recrystallized grains generated at parts of zigzag grain boundaries. The alloy occurred complete dynamic recrystallization at the deformation temperature of 900 ℃, and the deformed columnar grains were completely replaced by numerous equiaxed dynamic recrystallized grains with larger size. The tensile strengths of the alloy after dieless drawing first showed a very modest increase trend and then decreased greatly, while the elongations kept decrease.
Key words:  Cu-Al-Ni alloy      continuous columnar grain      dieless drawing      dynamic recrystallization      microstructure and mechanical property     
Received:  10 April 2012     
ZTFLH: 

TG146.1

 
Fund: 

National Natural Science Foundation of China

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00187     OR     https://www.ams.org.cn/EN/Y2012/V48/I7/867

[1] Zhu H, Matsuda J, Maruyama K. Mater Sci Eng, 2005; A397: 58

[2] Liu T Y, Robinson J S, Mccarthy M A. J Mater Process Technol, 2004; 153–154: 185

[3] Motoyasu G, Kaneko M, Soda H, Mclean A. Metall Mater Trans, 2001; 32A: 585

[4] Cai L S, Yu Y Q, Yin Z H, Wang D F, Li W G. Heat Treat Met, 2006; 31: 53

(蔡莲淑, 余业球, 尹占华, 王德芳, 黎沃光. 金属热处理, 2006; 31: 53)

[5] Liu X F, Li W H, Xie J X. Chin J Nonferrous Met, 2008; 18: 1248

(刘雪峰, 李卫河, 谢建新. 中国有色金属学报, 2008; 18: 1248)

[6] Zhang H, Xie J X, Wang Z D. J Univ Sci Technol Beijing, 2004; 11: 240

[7] Li Y G, Quick N R, Kar A. J Mater Process Technol, 2002; 123: 451

[8] Furushima T, Manabe K. J Mater Process Technol, 2007; 187–188: 236

[9] Wang Z T, Zhang S H, Xu Y, Luan G F, Bai G R. J Mater Process Technol, 2002; 120: 90

[10] Carolan R, Tiernan P. J Mater Process Technol, 2009; 209: 3335

[11] Furushima T, Manabe K. J Mater Process Technol, 2008; 201: 123

[12] Naughton M D, Tiernan P. J Mater Process Technol, 2007; 191: 310

[13] Li Y G, Nathaniel R Q, Aravinda K. Mater Sci Eng, 2003; A358: 59

[14] Tiernan P, Hillery M T. J Mater Process Technol, 2004; 155–156: 1178

[15] Liu X F, Wu Y H, Xie J X. Sci Chin, 2009; 52E: 2232

[16] He Y. PhD Thesis, University of Science and Technology Beijing, 2011

(何勇. 北京科技大学博士学位论文, 2011)

[17] Wang Z, Liu X F, Xie J X. Prog Nat Sci–Mater Int, 2011; 21: 368

[18] Krishnan R V, Delaey L, Tas H, Warlimont H. J Mater Sci, 1974; 9: 1536

[19] Zhou Z Q, Yue X L, Huo D P. Ordnance Mater Sci Eng, 1998; 21: 3

(周自强, 岳雪兰, 霍登平. 兵器材料科学与工程, 1998; 21: 3)

[20] Gastien R, Corbellani C E, Alvarez Villar H N, Sade M, Lovely F C. Mater Sci Eng, 2003; A349: 191

[21] Chen G L, Lin J P. Basis of Physical Metallurgy of Ordered Intermetallic Compound Materials. Beijing: Metallurgy Industry Press, 1999: 251

(陈国良, 林均品. 有序金属间化合物结构材料物理金属学基础. 北京: 冶金工业出版社, 1999: 251)

[22] Lovey F C, Torra V. Prog Mater Sci, 1999; 44: 189

[23] Hua K F. Micro–theories of Metal Mechanical Properties. Beijing: Science Press, 1983: 158

(哈宽富. 金属力学性质的微观理论. 北京: 科学出版社, 1983: 158)
[1] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[2] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[3] WU Caihong, FENG Di, ZANG Qianhao, FAN Shichun, ZHANG Hao, LEE Yunsoo. Microstructure Evolution and Recrystallization Behavior During Hot Deformation of Spray Formed AlSiCuMg Alloy[J]. 金属学报, 2022, 58(7): 932-942.
[4] REN Shaofei, ZHANG Jianyang, ZHANG Xinfang, SUN Mingyue, XU Bin, CUI Chuanyong. Evolution of Interfacial Microstructure of Ni-Co Base Superalloy During Plastic Deformation Bonding and Its Bonding Mechanism[J]. 金属学报, 2022, 58(2): 129-140.
[5] JIANG Weining, WU Xiaolong, YANG Ping, GU Xinfu, XIE Qingge. Formation of Dynamic Recrystallization Zone and Characteristics of Shear Texture in Surface Layer of Hot-Rolled Silicon Steel[J]. 金属学报, 2022, 58(12): 1545-1556.
[6] NI Ke, YANG Yinhui, CAO Jianchun, WANG Liuhang, LIU Zehui, QIAN Hao. Softening Behavior of 18.7Cr-1.0Ni-5.8Mn-0.2N Low Nickel-Type Duplex Stainless Steel During Hot Compression Deformation Under Large Strain[J]. 金属学报, 2021, 57(2): 224-236.
[7] CHEN Wenxiong, HU Baojia, JIA Chunni, ZHENG Chengwu, LI Dianzhong. Post-Dynamic Softening of Austenite in a Ni-30%Fe Model Alloy After Hot Deformation[J]. 金属学报, 2020, 56(6): 874-884.
[8] ZHANG Yang, SHAO Jianbo, CHEN Tao, LIU Chuming, CHEN Zhiyong. Deformation Mechanism and Dynamic Recrystallization of Mg-5.6Gd-0.8Zn Alloy During Multi-Directional Forging[J]. 金属学报, 2020, 56(5): 723-735.
[9] WU Huajian, CHENG Renshan, LI Jingren, XIE Dongsheng, SONG Kai, PAN Hucheng, QIN Gaowu. Effect of Al Content on Microstructure and Mechanical Properties of Mg-Sn-Ca Alloy[J]. 金属学报, 2020, 56(10): 1423-1432.
[10] ZHANG Yong, LI Xinxu, WEI Kang, WAN Zhipeng, JIA Chonglin, WANG Tao, LI Zhao, SUN Yu, LIANG Hongyan. Hot Deformation Characteristics of Novel Wrought Superalloy GH4975 Extruded Rod Used for 850 ℃ Turbine Disc[J]. 金属学报, 2020, 56(10): 1401-1410.
[11] Xu LI,Qingbo YANG,Xiangze FAN,Yonglin GUO,Lin LIN,Zhiqing ZHANG. Influence of Deformation Parameters on Dynamic Recrystallization of 2195 Al-Li Alloy[J]. 金属学报, 2019, 55(6): 709-719.
[12] Yahui DENG,Yinhui YANG,Jianchun CAO,Hao QIAN. Research on Dynamic Recrystallization Behavior of 23Cr-2.2Ni-6.3Mn-0.26N Low Nickel TypeDuplex Stainless Steel[J]. 金属学报, 2019, 55(4): 445-456.
[13] Xiting ZHONG, Lei WANG, Feng LIU. Study on Formation Mechanism of Necklace Structure in Discontinuous Dynamic Recrystallization of Incoloy 028[J]. 金属学报, 2018, 54(7): 969-980.
[14] Yusen SU, Yinhui YANG, Jianchun CAO, Yuliang BAI. Research on Hot Working Behavior of Low-NickelDuplex Stainless Steel 2101[J]. 金属学报, 2018, 54(4): 485-493.
[15] Tao WANG, Zhipeng WAN, Yu SUN, Zhao LI, Yong ZHANG, Lianxi HU. Dynamic Softening Behavior and Microstructure Evolution of Nickel Base Superalloy[J]. 金属学报, 2018, 54(1): 83-92.
No Suggested Reading articles found!