|
|
SOLIDIFICATION BEHAVIORS OF HIGHLY UNDERCOOLED Ni-21.4%Si EUTECTIC ALLOY |
CHANG Fang'e, ZHAO Zhiwei, ZHU Man, LI Na, FANG Wen, DONG Guangzhi, JIAN Zengyun |
School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710032 |
|
Cite this article:
CHANG Fang'e ZHAO Zhiwei ZHU Man LI Na FANG Wen DONG Guangzhi JIAN Zengyun. SOLIDIFICATION BEHAVIORS OF HIGHLY UNDERCOOLED Ni-21.4%Si EUTECTIC ALLOY. Acta Metall Sin, 2012, 48(7): 875-881.
|
Abstract The solidification behaviors of highly undercooled Ni-21.4%Si eutectic alloy molten under a slag composed of B2O3 and soda lime glass were investigated and the undercooling for the alloy to nucleate homogenously was predicted theoretically. It is found that a undercooling of 318 K can be achieved in Ni-21.4%Si eutectic alloy by using slag technique. Theoretical calculation shows that the maximum undercooling obtained in Ni-21.4%Si eutectic alloy has reached the homogeneous nucleation undercooling for the alloy. The solidification behavior and structure of undercooled Ni-21.4%Si eutectic alloy depend on the undercooling. When the undercooling is lower than 250 K, there are two recalescence peaks on the cooling curve. The solidified microstructure is composed of primary Ni3Si phase and regular eutectic as the undercooling is lower than 206 K, while primary α-Ni phase and regular eutectic structure are obtained when the undercooling is in the region from 206 K to 250 K. When the undercooling is greater than 250 K, only one recalescence peak is observed in the cooling curve and anomalous eutectic structure is obtained. Undercooling can influence the growth mode of primary Ni3Si. The primary Ni$_{3}$Si transforms from lateral growth to non-lateral growth with increasing the undercooling.
|
Received: 04 January 2012
|
[1] Turnbull D, Cech R E. J Appl Phys, 1950; 21: 804[2] Perepezko J H. Mater Sci Eng, 1984; 65: 125[3] Jian Z Y, Kuribayashi K, Jie W Q. Acta Mater, 2004; 52: 3323[4] Jian Z Y, Kuribayashi K, Jie W Q. Acta Mater, 2006; 54: 3227[5] Goetzinger R, Barth M, Herlach D M. J Appl Phys, 1998; 84: 1643[6] Goetzinger R, Barth M, Herlach D M. Acta Mater, 1998; 46: 1647[7] Leonhardt M, Lindenkreuz H G, L¨oser W, Eckert J. Mater Sci Forum, 1999; 312: 275[8] Xi Z Z, Yang G C, Zhou Y H. Prog Nat Sci, 1997; 7: 624[9] Xi Z Z, Yang G C, L¨u Y L, Zhou Y H. Acta Metall Sin, 1998; 34: 511(惠增哲, 杨根仓, 吕衣礼, 周尧和. 金属学报, 1998; 34: 511)[10] Lu Y P, Yang G C, Xi Z Z, Wang H P, Zhou Y H. Mater Lett, 2005; 59: 1558[11] Lu Y P, Liu F, Yang G C, Wang H P, Zhou Y H. Mater Lett, 2007; 61: 987[12] Lu Y P. PhD Thesis, Northwestern Polytechnical University, Xi’an, 2008(卢一平. 西北工业大学博士学位论文, 西安, 2008)[13] Liu F, Chen Y Z, Yang G C, Lu Y P, Chen Z, Zhou Y H. J Mater Res, 2007; 22: 2953[14] Zhang Z Z, Song G S, Yang G C, Zhou Y H. Foundry Technol, 1993; 3: 40(张振忠, 宋广生, 杨根仓, 周尧和. 铸造技术, 1993; 3: 40)[15] Jian Z Y, Jie W Q. Metall Mater Trans, 2001; 32A: 391[16] Jian Z Y, Chang F E, Ma W H, Yan W, Yang G C, Zhou Y H. Sci China, 2000; 30E: 9(坚增运, 常芳娥, 马卫红, 严 文, 杨根仓, 周尧和. 中国科学, 2000; 30E: 9)[17] Jian Z Y, Kuribayashi K, Jie W Q. Mater Trans JIM, 2002; 43: 721[18] Miedema A R, De Chatel P F, De Boer F R. Physica, 1980; B100: 1[19] Chen X Q, Ding X Y, Liu X, Zheng H Y. Acta Metall Sin, 2000; 36: 492(陈星秋, 丁学勇, 刘新, 郑海燕. 金属学报, 2000; 36: 492)[20] Acker J, Bohmhammel K. Thermochim Acta, 1999; 337: 187[21] Cadirli E, Herlach D M, Volkmann T. J Non–Cryst Solids, 2010; 356: 461[22] Li J F, JieWQ, Zhao S, Zhou Y H. Metall Mater Trans, 2007; 38A: 1806[23] Li J F, Li X L, Liu L, Lu S Y. J Mater Res, 2008; 23: 2139[24] Hu H Q. Theory of Metal Solidification. 2nd Ed., Beijing: China Machine Press, 2000: 173(胡汉起. 金属凝固原理. 第2版, 北京: 机械工业出版社, 2000: 173)[25] Kurz W, Fisher D J. Acta Metall, 1981, 29: 11[26] Tewari S N. Metall Trans, 1987; 18A: 525[27] Evans E D, Hofmeister W H, Bayuzick R J, Robinson M B. Metall Mater Trans, 1986; 17A: 973 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|