Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (7): 875-881    DOI: 10.3724/SP.J.1037.2012.00006
论文 Current Issue | Archive | Adv Search |
SOLIDIFICATION BEHAVIORS OF HIGHLY UNDERCOOLED Ni-21.4%Si EUTECTIC ALLOY
CHANG Fang'e, ZHAO Zhiwei, ZHU Man, LI Na, FANG Wen, DONG Guangzhi, JIAN Zengyun
School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710032
Cite this article: 

CHANG Fang'e ZHAO Zhiwei ZHU Man LI Na FANG Wen DONG Guangzhi JIAN Zengyun. SOLIDIFICATION BEHAVIORS OF HIGHLY UNDERCOOLED Ni-21.4%Si EUTECTIC ALLOY. Acta Metall Sin, 2012, 48(7): 875-881.

Download:  PDF(5333KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The solidification behaviors of highly undercooled Ni-21.4%Si eutectic alloy molten under a slag composed of B2O3 and soda lime glass were investigated and the undercooling for the alloy to nucleate homogenously was predicted theoretically. It is found that a undercooling of 318 K can be achieved in Ni-21.4%Si eutectic alloy by using slag technique. Theoretical calculation shows that the maximum undercooling obtained in Ni-21.4%Si eutectic alloy has reached the homogeneous nucleation undercooling for the alloy. The solidification behavior and structure of undercooled Ni-21.4%Si eutectic alloy depend on the undercooling. When the undercooling is lower than 250 K, there are two recalescence peaks on the cooling curve. The solidified microstructure is composed of primary Ni3Si phase and regular eutectic as the undercooling is lower than 206 K, while primary α-Ni phase and regular eutectic structure are obtained when the undercooling is in the region from 206 K to 250 K. When the undercooling is greater than 250 K, only one recalescence peak is observed in the cooling curve and anomalous eutectic structure is obtained. Undercooling can influence the growth mode of primary Ni3Si. The primary Ni$_{3}$Si transforms from lateral growth to non-lateral growth with increasing the undercooling.
Key words:  high undercooling      Ni-21.4%Si alloy      solidification      microstructure      homogeneous nucleation     
Received:  04 January 2012     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00006     OR     https://www.ams.org.cn/EN/Y2012/V48/I7/875

[1] Turnbull D, Cech R E. J Appl Phys, 1950; 21: 804

[2] Perepezko J H. Mater Sci Eng, 1984; 65: 125

[3] Jian Z Y, Kuribayashi K, Jie W Q. Acta Mater, 2004; 52: 3323

[4] Jian Z Y, Kuribayashi K, Jie W Q. Acta Mater, 2006; 54: 3227

[5] Goetzinger R, Barth M, Herlach D M. J Appl Phys, 1998; 84: 1643

[6] Goetzinger R, Barth M, Herlach D M. Acta Mater, 1998; 46: 1647

[7] Leonhardt M, Lindenkreuz H G, L¨oser W, Eckert J. Mater Sci Forum, 1999; 312: 275

[8] Xi Z Z, Yang G C, Zhou Y H. Prog Nat Sci, 1997; 7: 624

[9] Xi Z Z, Yang G C, L¨u Y L, Zhou Y H. Acta Metall Sin, 1998; 34: 511

(惠增哲, 杨根仓, 吕衣礼, 周尧和. 金属学报, 1998; 34: 511)

[10] Lu Y P, Yang G C, Xi Z Z, Wang H P, Zhou Y H. Mater Lett, 2005; 59: 1558

[11] Lu Y P, Liu F, Yang G C, Wang H P, Zhou Y H. Mater Lett, 2007; 61: 987

[12] Lu Y P. PhD Thesis, Northwestern Polytechnical University, Xi’an, 2008

(卢一平. 西北工业大学博士学位论文, 西安, 2008)

[13] Liu F, Chen Y Z, Yang G C, Lu Y P, Chen Z, Zhou Y H. J Mater Res, 2007; 22: 2953

[14] Zhang Z Z, Song G S, Yang G C, Zhou Y H. Foundry Technol, 1993; 3: 40

(张振忠, 宋广生, 杨根仓, 周尧和. 铸造技术, 1993; 3: 40)

[15] Jian Z Y, Jie W Q. Metall Mater Trans, 2001; 32A: 391

[16] Jian Z Y, Chang F E, Ma W H, Yan W, Yang G C, Zhou Y H. Sci China, 2000; 30E: 9

(坚增运, 常芳娥, 马卫红, 严 文, 杨根仓, 周尧和. 中国科学, 2000; 30E: 9)

[17] Jian Z Y, Kuribayashi K, Jie W Q. Mater Trans JIM, 2002; 43: 721

[18] Miedema A R, De Chatel P F, De Boer F R. Physica, 1980; B100: 1

[19] Chen X Q, Ding X Y, Liu X, Zheng H Y. Acta Metall Sin, 2000; 36: 492

(陈星秋, 丁学勇, 刘新, 郑海燕. 金属学报, 2000; 36: 492)

[20] Acker J, Bohmhammel K. Thermochim Acta, 1999; 337: 187

[21] Cadirli E, Herlach D M, Volkmann T. J Non–Cryst Solids, 2010; 356: 461

[22] Li J F, JieWQ, Zhao S, Zhou Y H. Metall Mater Trans, 2007; 38A: 1806

[23] Li J F, Li X L, Liu L, Lu S Y. J Mater Res, 2008; 23: 2139

[24] Hu H Q. Theory of Metal Solidification. 2nd Ed., Beijing: China Machine Press, 2000: 173

(胡汉起. 金属凝固原理. 第2版, 北京: 机械工业出版社, 2000: 173)

[25] Kurz W, Fisher D J. Acta Metall, 1981, 29: 11

[26] Tewari S N. Metall Trans, 1987; 18A: 525

[27] Evans E D, Hofmeister W H, Bayuzick R J, Robinson M B. Metall Mater Trans, 1986; 17A: 973
[1] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[6] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[7] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[8] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[9] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[10] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[11] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[12] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[13] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[14] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[15] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
No Suggested Reading articles found!