Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (12): 1409-1414    DOI: 10.3724/SP.J.1037.2012.00286
Current Issue | Archive | Adv Search |
RESEARCH ON GRAIN REFINEMENT IN BULK UNDERCOOLED Fe–Co BASE ALLOYS
MU Danning, YANG Changlin, WEI Xiaowei, LIU Feng
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072
Cite this article: 

MU Danning YANG Changlin WEI Xiaowei LIU Feng. RESEARCH ON GRAIN REFINEMENT IN BULK UNDERCOOLED Fe–Co BASE ALLOYS. Acta Metall Sin, 2012, 48(12): 1409-1414.

Download:  PDF(1901KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Fe–Co base alloys, owing to their excellent high tempreture soft magnetic property, have been given more and more attention. Especially, Fe–Co base bulk amorphous–nanocrystalline materials have became an important development direction, while the preparation techniques have limited the wide applications of these high performance magnetic materials. Undercooling rapid solidification technique, independent of the sample size, has unique advantages in preparing bulk microcrystalline and nanocrystalline materials. However, upon large volume of alloy melt, more heterogeneous nucleus and latent heat of crystallization will occurr, which is disadvantageous to obtain a high undercooling and to repress grain growth in the process of solidification. Obviously, regular rapid solidification technique has not met the requirements for the preparation of industrial products with a large volume. So it is important and necessary to combine other rapid solidification techniques with regular rapid solidification technique to achieve high undercooling. In present work, copper mould chilling was used for undercooled Fe–Co base alloy melts. On one hand, the latent heat of crystallization can be transmitted to outside more rapidly by copper mould, on the other hand, by increasing the cooling rate, copper mould can also make undercooled melt achieve further undercooling. In this work, applying fluxing purification and cycling superheating method, Fe44Co44Nb7B4Cu1 melts were undercooled, and microstructure evolutions of the two different kinds of Fe44Co44Nb7B4Cu1 alloy samples prepared by undercooling solidification and copper mould chilling were studied, respectively. Using SEM and EDS, the grain refinement mechanism was investigated systematically. The experimental results show that the dendrite structures chang into granular grains in both the two kinds of samples with the increase of undercooling. The critical undercooling of dendrite structures changing into granular grains is smaller in the samples prepared by copper mould chilling than that by undercooling solidification. And the smaller grains and more homogenous microstructures are found in the samples prepared by copper mould chilling under the same undercooling. In combination with the calculations and the analysis of experiment results, it indicates that the decrease of the grain size is mainly attributed to the melt supercooling, remelting and copper mold chilling which increases nucleation rate and inhibits the grain growth. While alloying element gathering at the grain boundary is not the main factor.

Key words:  Fe–Co base bulk alloy      undercooling      copper mould chilling      solidification microstructure      grain refinement     
Received:  17 May 2012     
Fund: 

Supported by National Natural Science Foundation of China (No.50901059), National Science Fund for Distinguished Young Scholars of China (No.51125002) and Research Fund of State Key Laboratory of Solidification Processing (NWPU) (Nos.41–QP–2009 and 60–TP– 2010)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00286     OR     https://www.ams.org.cn/EN/Y2012/V48/I12/1409

[1] Herlach D M. Mater Sci Eng, 1994; R12: 177

[2] Herlach D M, Eckler K, Karma A, Schwarz M. Mater Sci Eng, 2001; A304–306: 20

[3] Liu N, Liu F, Yang G C, Chen Y Z, Yang C L, Li J S,Zhou Y H. J Alloys Compd, 2008; 455: L6

[4] Liu N, Yang G C, Chen Y Z, Zhou Y H. Prog Nat Sci,2006; 16: 120

(刘宁, 杨根仓, 陈豫增, 周尧和. 自然科学进展, 2006; 16: 120)

[5] Han Y, Yang C L, Liu F, Sang G L, Jiang Y H. Foundry Technol, 2011; 32: 453

(韩 野, 杨长林, 刘 峰, 桑国良, 姜伊辉. 铸造技术, 2011; 32: 453)

[6] Hayzelden C, Rayment J J, Cantor B. Acta Metall, 1983;31: 379

[7] Boettinger W J, Coriell S R, Trivedi R. Rapid Solidification Processing. 4th Ed., Baton Rouge La: Claitor’s Publishing Division, 1988: 13

[8] Liu N, Yang G C, Liu F, Chen Y Z, Yang C L, Zhou Y H. Acta Metall Sin, 2007; 43: 449

(刘宁, 杨根仓, 刘峰, 陈豫增, 杨长林, 周尧和. 金属学报, 2007; 43: 449)

[9] Liu N, Liu F, Yang G C, Chen Y Z, Chen D, Yang C L, Zhou Y H. Physica, 2007; 387B: 151

[10] Hermann R, Loser W. J Magn Magn Mater, 2002; 242–245: 285

[11] Liu N, Yang G C, Liu F, Yang C L. Chin J Mater Res,2010; 24: 525

(刘宁, 杨根仓, 刘峰, 陈豫增, 杨长林. 材料研究学报, 2010; 24: 525)

[12] Li M J, Xue Y F, Song G S, Yang G C, Zhou Y H. Acta Metall Sin, 1999; 35: 517

(李明军, 薛玉芳, 宋广生, 杨根仓, 周尧和. 金属学报, 1999; 35: 517)

[13] Hayzelden C, Rayment J J, Cantor B. Acta Metall, 1983;31: 379

[14] Aziz M J. J Appl Phys, 1982; 53: 1158

[15] Burke J E. Trans Met Soc AIME, 1949; 175: 73

[16] Michels A, Krill C E, Ehrhrdt H, Birringer R, Wu D T. Acta Mater, 1999; 47: 2143

[17] Li J J, Wang J C, Yang G C. Scr Mater, 2009; 60: 945

[18] Zhu M, Wu Z F, Zeng M Q, Ouyang L Z, Gao Y. J Mater Sci, 2008; 43: 3259

[19] Natter H, Schmelzer M, Lo1ffler M S, Krill C E, Fitch A, Hempelmann R. J Phys Chem, 2000; 104B: 2467

[20] Jackson K A, Hunt J D, Uhlmann D R, Stewart T P. TMS–AIME, 1966; 236: 149

[21] Karma A. Int J Non–Equilib Process, 1998; 11: 201

[22] Liu F, Yang G C. J Cryst Growth, 2001; 231: 295

[23] Liu F, Guo X F, Yang G C. Chin J Mater Res, 2001; 15:269

 (刘峰, 郭学锋, 杨根仓. 材料研究学报, 2001; 15: 269)

[24] Piccone T J, Wu Y, Shiohara Y, Flemings M C. Mater Trans, 1987; 18A: 925

[25] Li M J, Lin X, Song G S, Yang C L, Zhou Y H. Mater Sci Eng, 1999; A268: 90

[26] Li M J. PhD Thesis, Northwestern Polytechnical University, Xi’an, 1999

(李明军. 西北工业大学博士学位论文, 西安, 1999)

[1] LI Xiaobing, QIAN Kun, SHU Lei, ZHANG Mengshu, ZHANG Jinhu, CHEN Bo, LIU Kui. Effect of W Content on the Phase Transformation Behavior in Ti-42Al-5Mn- xW Alloy[J]. 金属学报, 2023, 59(10): 1401-1410.
[2] WU Guohua, TONG Xin, JIANG Rui, DING Wenjiang. Grain Refinement of As-Cast Mg-RE Alloys: Research Progress and Future Prospect[J]. 金属学报, 2022, 58(4): 385-399.
[3] LIU Jie, XU Le, SHI Chao, YANG Shaopeng, HE Xiaofei, WANG Maoqiu, SHI Jie. Effect of Rare Earth Ce on Sulfide Characteristics and Microstructure in Non-Quenched and Tempered Steel[J]. 金属学报, 2022, 58(3): 365-374.
[4] DING Ning, WANG Yunfeng, LIU Ke, ZHU Xunming, LI Shubo, DU Wenbo. Microstructure, Texture, and Mechanical Properties of Mg-8Gd-1Er-0.5Zr Alloy by Multi-Directional Forging at High Strain Rate[J]. 金属学报, 2021, 57(8): 1000-1008.
[5] XU Junfeng, ZHANG Baodong, Peter K Galenko. Model of Eutectic Transformation Involving Intermetallic Compound[J]. 金属学报, 2021, 57(10): 1320-1332.
[6] ZHENG Qiuju, YE Zhongfei, JIANG Hongxiang, LU Ming, ZHANG Lili, ZHAO Jiuzhou. Effect of Micro-Alloying Element La on Solidification Microstructure and Mechanical Properties of Hypoeutectic Al-Si Alloys[J]. 金属学报, 2021, 57(1): 103-110.
[7] LI Xiucheng,SUN Mingyu,ZHAO Jingxiao,WANG Xuelin,SHANG Chengjia. Quantitative Crystallographic Characterization of Boundaries in Ferrite-Bainite/Martensite Dual-Phase Steels[J]. 金属学报, 2020, 56(4): 653-660.
[8] DENG Congkun,JIANG Hongxiang,ZHAO Jiuzhou,HE Jie,ZHAO Lei. Study on the Solidification of Ag-Ni Monotectic Alloy[J]. 金属学报, 2020, 56(2): 212-220.
[9] WU Huajian, CHENG Renshan, LI Jingren, XIE Dongsheng, SONG Kai, PAN Hucheng, QIN Gaowu. Effect of Al Content on Microstructure and Mechanical Properties of Mg-Sn-Ca Alloy[J]. 金属学报, 2020, 56(10): 1423-1432.
[10] ZHANG Jun,JIE Ziqi,HUANG Taiwen,YANG Wenchao,LIU Lin,FU Hengzhi. Research and Development of Equiaxed Grain Solidification and Forming Technology for Nickel-Based Cast Superalloys[J]. 金属学报, 2019, 55(9): 1145-1159.
[11] Liping DENG,Kaixuan CUI,Bingshu WANG,Hongliang XIANG,Qiang LI. Microstructure and Texture Evolution of AZ31 Mg Alloy Processed by Multi-Pass Compressing Under Room Temperature[J]. 金属学报, 2019, 55(8): 976-986.
[12] Kuanhui HU, Xinping MAO, Guifeng ZHOU, Jing LIU, Zhifen WANG. Effect of Si and Mn Contents on the Microstructure and Mechanical Properties of Ultra-High Strength Press Hardening Steel[J]. 金属学报, 2018, 54(8): 1105-1112.
[13] Yun LI, Lianjie LIU, Xinming LI, Jinfu LI. Solidification of Undercooled Co75B25 Alloy[J]. 金属学报, 2018, 54(8): 1165-1170.
[14] Dandan FAN, Junfeng XU, Yanan ZHONG, Zengyun JIAN. Effect of Superheated Temperature and Cooling Rate on the Solidification of Undercooled Ti Melt[J]. 金属学报, 2018, 54(6): 844-850.
[15] Shubo LI, Wenbo DU, Xudong WANG, Ke LIU, Zhaohui WANG. Effect of Zr Addition on the Grain Refinement Mechanism of Mg-Gd-Er Alloys[J]. 金属学报, 2018, 54(6): 911-917.
No Suggested Reading articles found!