Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (12): 1409-1414    DOI: 10.3724/SP.J.1037.2012.00286
Current Issue | Archive | Adv Search |
RESEARCH ON GRAIN REFINEMENT IN BULK UNDERCOOLED Fe–Co BASE ALLOYS
MU Danning, YANG Changlin, WEI Xiaowei, LIU Feng
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072
Download:  PDF(1901KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Fe–Co base alloys, owing to their excellent high tempreture soft magnetic property, have been given more and more attention. Especially, Fe–Co base bulk amorphous–nanocrystalline materials have became an important development direction, while the preparation techniques have limited the wide applications of these high performance magnetic materials. Undercooling rapid solidification technique, independent of the sample size, has unique advantages in preparing bulk microcrystalline and nanocrystalline materials. However, upon large volume of alloy melt, more heterogeneous nucleus and latent heat of crystallization will occurr, which is disadvantageous to obtain a high undercooling and to repress grain growth in the process of solidification. Obviously, regular rapid solidification technique has not met the requirements for the preparation of industrial products with a large volume. So it is important and necessary to combine other rapid solidification techniques with regular rapid solidification technique to achieve high undercooling. In present work, copper mould chilling was used for undercooled Fe–Co base alloy melts. On one hand, the latent heat of crystallization can be transmitted to outside more rapidly by copper mould, on the other hand, by increasing the cooling rate, copper mould can also make undercooled melt achieve further undercooling. In this work, applying fluxing purification and cycling superheating method, Fe44Co44Nb7B4Cu1 melts were undercooled, and microstructure evolutions of the two different kinds of Fe44Co44Nb7B4Cu1 alloy samples prepared by undercooling solidification and copper mould chilling were studied, respectively. Using SEM and EDS, the grain refinement mechanism was investigated systematically. The experimental results show that the dendrite structures chang into granular grains in both the two kinds of samples with the increase of undercooling. The critical undercooling of dendrite structures changing into granular grains is smaller in the samples prepared by copper mould chilling than that by undercooling solidification. And the smaller grains and more homogenous microstructures are found in the samples prepared by copper mould chilling under the same undercooling. In combination with the calculations and the analysis of experiment results, it indicates that the decrease of the grain size is mainly attributed to the melt supercooling, remelting and copper mold chilling which increases nucleation rate and inhibits the grain growth. While alloying element gathering at the grain boundary is not the main factor.

Key words:  Fe–Co base bulk alloy      undercooling      copper mould chilling      solidification microstructure      grain refinement     
Received:  17 May 2012     
Fund: 

Supported by National Natural Science Foundation of China (No.50901059), National Science Fund for Distinguished Young Scholars of China (No.51125002) and Research Fund of State Key Laboratory of Solidification Processing (NWPU) (Nos.41–QP–2009 and 60–TP– 2010)

Cite this article: 

MU Danning YANG Changlin WEI Xiaowei LIU Feng. RESEARCH ON GRAIN REFINEMENT IN BULK UNDERCOOLED Fe–Co BASE ALLOYS. Acta Metall Sin, 2012, 48(12): 1409-1414.

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00286     OR     https://www.ams.org.cn/EN/Y2012/V48/I12/1409

[1] Herlach D M. Mater Sci Eng, 1994; R12: 177

[2] Herlach D M, Eckler K, Karma A, Schwarz M. Mater Sci Eng, 2001; A304–306: 20

[3] Liu N, Liu F, Yang G C, Chen Y Z, Yang C L, Li J S,Zhou Y H. J Alloys Compd, 2008; 455: L6

[4] Liu N, Yang G C, Chen Y Z, Zhou Y H. Prog Nat Sci,2006; 16: 120

(刘宁, 杨根仓, 陈豫增, 周尧和. 自然科学进展, 2006; 16: 120)

[5] Han Y, Yang C L, Liu F, Sang G L, Jiang Y H. Foundry Technol, 2011; 32: 453

(韩 野, 杨长林, 刘 峰, 桑国良, 姜伊辉. 铸造技术, 2011; 32: 453)

[6] Hayzelden C, Rayment J J, Cantor B. Acta Metall, 1983;31: 379

[7] Boettinger W J, Coriell S R, Trivedi R. Rapid Solidification Processing. 4th Ed., Baton Rouge La: Claitor’s Publishing Division, 1988: 13

[8] Liu N, Yang G C, Liu F, Chen Y Z, Yang C L, Zhou Y H. Acta Metall Sin, 2007; 43: 449

(刘宁, 杨根仓, 刘峰, 陈豫增, 杨长林, 周尧和. 金属学报, 2007; 43: 449)

[9] Liu N, Liu F, Yang G C, Chen Y Z, Chen D, Yang C L, Zhou Y H. Physica, 2007; 387B: 151

[10] Hermann R, Loser W. J Magn Magn Mater, 2002; 242–245: 285

[11] Liu N, Yang G C, Liu F, Yang C L. Chin J Mater Res,2010; 24: 525

(刘宁, 杨根仓, 刘峰, 陈豫增, 杨长林. 材料研究学报, 2010; 24: 525)

[12] Li M J, Xue Y F, Song G S, Yang G C, Zhou Y H. Acta Metall Sin, 1999; 35: 517

(李明军, 薛玉芳, 宋广生, 杨根仓, 周尧和. 金属学报, 1999; 35: 517)

[13] Hayzelden C, Rayment J J, Cantor B. Acta Metall, 1983;31: 379

[14] Aziz M J. J Appl Phys, 1982; 53: 1158

[15] Burke J E. Trans Met Soc AIME, 1949; 175: 73

[16] Michels A, Krill C E, Ehrhrdt H, Birringer R, Wu D T. Acta Mater, 1999; 47: 2143

[17] Li J J, Wang J C, Yang G C. Scr Mater, 2009; 60: 945

[18] Zhu M, Wu Z F, Zeng M Q, Ouyang L Z, Gao Y. J Mater Sci, 2008; 43: 3259

[19] Natter H, Schmelzer M, Lo1ffler M S, Krill C E, Fitch A, Hempelmann R. J Phys Chem, 2000; 104B: 2467

[20] Jackson K A, Hunt J D, Uhlmann D R, Stewart T P. TMS–AIME, 1966; 236: 149

[21] Karma A. Int J Non–Equilib Process, 1998; 11: 201

[22] Liu F, Yang G C. J Cryst Growth, 2001; 231: 295

[23] Liu F, Guo X F, Yang G C. Chin J Mater Res, 2001; 15:269

 (刘峰, 郭学锋, 杨根仓. 材料研究学报, 2001; 15: 269)

[24] Piccone T J, Wu Y, Shiohara Y, Flemings M C. Mater Trans, 1987; 18A: 925

[25] Li M J, Lin X, Song G S, Yang C L, Zhou Y H. Mater Sci Eng, 1999; A268: 90

[26] Li M J. PhD Thesis, Northwestern Polytechnical University, Xi’an, 1999

(李明军. 西北工业大学博士学位论文, 西安, 1999)

[1] LI Xiucheng,SUN Mingyu,ZHAO Jingxiao,WANG Xuelin,SHANG Chengjia. Quantitative Crystallographic Characterization of Boundaries in Ferrite-Bainite/Martensite Dual-Phase Steels[J]. 金属学报, 2020, 56(4): 653-660.
[2] DENG Congkun,JIANG Hongxiang,ZHAO Jiuzhou,HE Jie,ZHAO Lei. Study on the Solidification of Ag-Ni Monotectic Alloy[J]. 金属学报, 2020, 56(2): 212-220.
[3] ZHANG Jun,JIE Ziqi,HUANG Taiwen,YANG Wenchao,LIU Lin,FU Hengzhi. Research and Development of Equiaxed Grain Solidification and Forming Technology for Nickel-Based Cast Superalloys[J]. 金属学报, 2019, 55(9): 1145-1159.
[4] Liping DENG,Kaixuan CUI,Bingshu WANG,Hongliang XIANG,Qiang LI. Microstructure and Texture Evolution of AZ31 Mg Alloy Processed by Multi-Pass Compressing Under Room Temperature[J]. 金属学报, 2019, 55(8): 976-986.
[5] Kuanhui HU, Xinping MAO, Guifeng ZHOU, Jing LIU, Zhifen WANG. Effect of Si and Mn Contents on the Microstructure and Mechanical Properties of Ultra-High Strength Press Hardening Steel[J]. 金属学报, 2018, 54(8): 1105-1112.
[6] Yun LI, Lianjie LIU, Xinming LI, Jinfu LI. Solidification of Undercooled Co75B25 Alloy[J]. 金属学报, 2018, 54(8): 1165-1170.
[7] Dandan FAN, Junfeng XU, Yanan ZHONG, Zengyun JIAN. Effect of Superheated Temperature and Cooling Rate on the Solidification of Undercooled Ti Melt[J]. 金属学报, 2018, 54(6): 844-850.
[8] Shubo LI, Wenbo DU, Xudong WANG, Ke LIU, Zhaohui WANG. Effect of Zr Addition on the Grain Refinement Mechanism of Mg-Gd-Er Alloys[J]. 金属学报, 2018, 54(6): 911-917.
[9] Guohua WU, Yushi CHEN, Wenjiang DING. Current Research and Future Prospect on Microstructures Controlling of High Performance Magnesium Alloys During Solidification[J]. 金属学报, 2018, 54(5): 637-646.
[10] Bin ZHAI, Kai ZHOU, Peng Lü, Haipeng WANG. Rapid Solidification of Ti-6Al-4V Alloy Micro-Droplets Under Free Fall Condition[J]. 金属学报, 2018, 54(5): 824-830.
[11] Jinfu LI, Yaohe ZHOU. Remelting of Primary Solid in Rapid Solidification of Deeply Undercooled Alloy Melts[J]. 金属学报, 2018, 54(5): 627-636.
[12] Zengyun JIAN, Tao XU, Junfeng XU, Man ZHU, Fang'e CHANG. Development of Solid-Liquid Interfacial Energyof Melt-Crystal[J]. 金属学报, 2018, 54(5): 766-772.
[13] Yizhe MAO, Jianguo LI, Lei FENG. Effect of Coarse β(Al3Mg2) Phase on Microstructure Evolution in 573 K Annealed Al-10Mg Alloy by Uniaxial Compression[J]. 金属学报, 2018, 54(10): 1451-1460.
[14] Lili ZHANG, Hongxiang JIANG, Jiuzhou ZHAO, Lu LI, Qian SUN. A New Understanding Toward Effect of Solute Ti on Grain Refinement of Aluminum by Al-Ti-B Master Alloy: Kinetic Behaviors of TiB2 Particles and Effect of Solute Ti[J]. 金属学报, 2017, 53(9): 1091-1100.
[15] Jianglei ZHU, Qing WANG, Haipeng WANG. Thermophysical Properties and Atomic Distribution of Undercooled Liquid Cu[J]. 金属学报, 2017, 53(8): 1018-1024.
No Suggested Reading articles found!