1 State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China 2 Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Cite this article:
Yun LI, Lianjie LIU, Xinming LI, Jinfu LI. Solidification of Undercooled Co75B25 Alloy. Acta Metall Sin, 2018, 54(8): 1165-1170.
The method to deeply undercool alloy melts far below the liquidus temperature by eliminating heterogeneous nucleation sites inside is frequently used in studying non-equilibrium solidification behavior, preparing quasi-crystal, amorphous alloy and other metastable materials. Previous work on the solidification of Co-(18.5~20.7)%B (atomic fraction) alloys indicated that metastable Co23B6 phase instead of stable Co3B phase was formed as the primary phase from the melts undercooled by larger than 60 K. To know whether Co23B6 phase can still primarily form from the deeply undercooled melt of Co75B25, the nominal composition of Co3B phase, the Co75B25 alloy melt was undercooled to different degrees using the glass fluxing technique, and the solidification path was identified by analyzing the microstructures and cooling curves of the samples. There was nothing other than α-Co and Co2B phases to form during solidification, indicating that not only the peritectic reaction of L (liquid) and Co2B into Co3B, predicted by the Co-B phase diagram, but also the formation of Co3B as primary phase at large undercooling were inhibited. The peritectic reaction did not occur even though the solidification was designed to occur at a very small undercooling and a cooling rate decreased to 5 K/min.
Fig.1 XRD spectra of Co75B25 alloy solidified at typical undercoolings (ΔT)
Fig.2 Cooling curves of Co75B25 alloy solidified at typical undercoolings (The insets on top right are magnifications of the transformation from the first recalescence to the second one for ΔT=210 K and 284 K, respectively; TL is the liquidus temperature)
Fig.3 Microstructures of Co75B25 alloy solidified at typical undercoolings 7 K (a), 85 K (b), 210 K (c) and 284 K (d) (Insets are magnification of local microstructure for relevant undercoolings)
Fig.4 XRD spectrum (a) and microstructure (b) of Co75B25 alloy undercooled by 5 K and solidified at a cooling rate of 5 K/min
Fig.5 DSC curves of repeatedly heating (a, c and e) and cooling (b and d) of Co75B25 alloy (with all the heating rates of 20 K/min)
Fig.6 Partial phase diagram of Co-B system on the Co-rich side, with dash lines exhibiting the L→α-Co/Co2B eutectic reaction[22]
[1]
Kattamis T Z, Flemings M C.Structure of undercooled Ni-Sn eutectic[J]. Metall. Mater. Trans., 1970, 1: 1449
[2]
Li J F, Liu Y C, Lu Y L, et al.Structural evolution of undercooled Ni-Cu alloys[J]. J. Cryst. Growth, 1998, 192: 462
[3]
Li J F, Zhou Y H, Yang G C.Solidification behavior of undercooled Cu70Ni30 alloy melt[J]. Mater. Sci. Eng., 2000, A277: 161
[4]
Battezzati L, Antonione C, Baricco M.Undercooling of Ni-B and Fe-B alloys and their metastable phase diagrams[J]. J. Alloys Compd., 1997, 247: 164
[5]
Xu J F, Liu F, Dang B.Phase selection in undercooled Ni-3.3 Wt Pct B alloy melt[J]. Metall. Mater. Trans., 2013, 44A: 1401
[6]
Liu F, Xu J F, Zhang D, et al.Solidification of highly undercooled hypereutectic Ni-Ni3B alloy melt[J]. Metall. Mater. Trans., 2014, 45A: 4810
[7]
Yang C L, Liu F, Yang G C, et al.Microstructure and phase selection in bulk undercooled Fe-B eutectic alloys[J]. J. Alloys Compd., 2007, 441: 101
[8]
Yang C L, Liu F, Yang G C, et al.Structure evolution upon non-equilibrium solidification of bulk undercooled Fe-B system[J]. J. Cryst. Growth, 2009, 311: 404
[9]
Yang C L, Yang G C, Liu F, et al.Metastable phase formation in eutectic solidification of highly undercooled Fe83B17 alloy melt[J]. Physica, 2006, 373B: 136
[10]
Chen L F, Chen X C.A study of deep undercooling for Al-Cu-Fe icosahedral quasicrystal[J]. Acta Phys. Sin., 1996, 45: 170(陈立凡, 陈熙琛. Al-Cu-Fe二十面体准晶的深过冷研究[J]. 物理学报, 1996, 45: 170)
[11]
Fan J F, Liu X B, Xie H, et al.Phase selection in undercooled melt of Al72Ni12Co16 quasicrystal-forming alloy[J]. Chin. J. Nonferrous Met., 2003, 13: 1087(樊建锋, 刘新宝, 谢辉等. 深过冷Al72Ni12Co16合金熔体中的相选择[J]. 中国有色金属学报, 2003, 13: 1087)
[12]
Drehman A J, Greer A L, Turnbull D.Bulk formation of a metallic glass: Pd40Ni40P20[J]. Appl. Phys. Lett., 1982, 41: 716
[13]
Nishiyama N, Inoue A.Supercooling investigation and critical cooling rate for glass formation in Pd-Cu-Ni-P alloy[J]. Acta Mater., 1999, 47: 1487
[14]
Liu N, Yang G C, Liu F, et al.Peritectic solidification of undercooled Fe-Co alloy[J]. Mater. Rev., 2011, 25(8): 57(刘宁, 杨根仓, 刘峰等. 过冷Fe-Co合金的包晶凝固[J]. 材料导报, 2011, 25(8): 57)
[15]
Kerr H W, Kurz W.Solidification of peritectic alloys[J]. Int. Mater. Rev., 1996, 41: 129
[16]
Dobler S, Lo T S, Plapp M, et al.Peritectic coupled growth[J]. Acta Mater., 2004, 52: 2795
[17]
Kohler F, Germond L, Wagnière J D, et al.Peritectic solidification of Cu-Sn alloys: Microstructural competition at low speed[J]. Acta Mater., 2009, 57: 56
Ba F H, Shen N F, Yu G.Peritectic reaction and solidification path in Ni-Al alloy during rapidly solidification process[J]. Chin. J. Nonferrous Met., 2003, 13: 335(巴发海, 沈宁福, 虞钢. Ni25Al75合金快速凝固过程中的包晶反应与凝固进程[J]. 中国有色金属学报, 2003, 13: 335)
[20]
Yang W, Zhang Y L, Yu H, et al.Effects of cooling rate on primary phase and peritectic transformation in Cu70Zr30 alloy[J]. Chin. J. Nonferrous Met., 2014, 24: 2295(杨伟, 张燕龙, 余欢等. 冷却速率对Cu70Zr30合金初生相及包晶转变的影响[J]. 中国有色金属学报, 2014, 24: 2295)
[21]
Wei X X.Study on the rapid solidification microstructure of deeply undercooled eutectic alloy melts [D]. Shanghai: Shanghai Jiao Tong University, 2016(韦修勋. 共晶合金深过冷快速凝固组织形成的研究 [D]. 上海: 上海交通大学, 2016)
[22]
Liao P K, Spear K E.Binary Alloy Phase Diagrams[M]. 2nd Ed., Materials Park, OH: ASM International, 1990: 452
[23]
Chizhevskii N P, Shmelev B A.The system Co-B[J]. Trudy Moskovskogo Inst. Stali Im. I. V. Stalina, 1940, 17: 3
[24]
Wei X X, Xu W, Kang J L, et al.Metastable Co23B6 phase solidified from deeply undercooled Co79.3B20.7 alloy melt[J]. J. Mater. Sci., 2016, 51: 6436
[25]
St John D H, Hogan L M. A simple prediction of the rate of the peritectic transformation[J]. Acta Metall., 1987, 35: 171
[26]
Han X J, Wang N, Wei B B.Rapid solidification of undercooled Pb-Bi hypoeutectic and peritectic alloys[J]. Acta Metall. Sin., 2000, 36: 573(韩秀君, 王楠, 魏炳波. Pb-Bi亚共晶和包晶合金的快速凝固[J]. 金属学报, 2000, 36: 573)
[27]
Koster W, Mulfinger U W.The binary systems of Co with B, As, Zr, Nb, and Ta[J]. Z. Metallkd., 1938, 30: 348
[28]
Rundqvist S.Two borides with the cementite structure[J]. Nature, 1958, 181: 259
[29]
Rundqvist S, Goa J, Colldahl H, et al.Crystal structure of Ni3B and Co3B[J]. Acta Chem. Scand., 1958, 12: 658
[30]
Kolomytsev P T.The phase composition of alloys of the cobalt-boron[J]. Dokl. Akad. Nauk SSSR+, 1959, 124: 1247
[31]
Kolomytsev P T.Equilibrium diagrams of the system Co-Co2B[J]. Dokl. Akad. Nauk SSSR+, 1960, 130: 767
[32]
Sch?bel J D, Stadelmaier H H.The cobalt-boron two-component system[J]. Z. Metallkd., 1966, 57: 323
[33]
Omori S, Hashimoto Y.Eutectoid decomposition of Co3B and phase diagram of the system Co-Co2B[J]. Trans. Jpn. Inst. Met., 1976, 17: 571