Please wait a minute...
Acta Metall Sin  2020, Vol. 56 Issue (4): 653-660    DOI: 10.11900/0412.1961.2019.00398
Current Issue | Archive | Adv Search |
Quantitative Crystallographic Characterization of Boundaries in Ferrite-Bainite/Martensite Dual-Phase Steels
LI Xiucheng,SUN Mingyu,ZHAO Jingxiao,WANG Xuelin,SHANG Chengjia()
Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China
Cite this article: 

LI Xiucheng,SUN Mingyu,ZHAO Jingxiao,WANG Xuelin,SHANG Chengjia. Quantitative Crystallographic Characterization of Boundaries in Ferrite-Bainite/Martensite Dual-Phase Steels. Acta Metall Sin, 2020, 56(4): 653-660.

Download:  HTML  PDF(9919KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In this study, two dual-phase steels with different ferrite-bainite/martensite ratios were obtained by rolling in two-phase region and setting the relaxation time after rolling. The tested steel with smaller ferrite content obtained higher yield strength and tensile strength, greater total elongation and lower ductile-brittle transition temperature; while the steel with higher ferrite content obtained higher uniform elongation and lower yield strength ratio. The EBSD characterization of the two steels shows that for the ferrite-ferrite boundaries and ferrite-bainite/martensite boundaries, if the interface has a large overall misorientation angle, it usually has a large cleavage plane misorientation angle and large slip plane misorientation angle; but for the variant-variant boundaries within bainite or martensite, if the interface has a large overall misorientation angle, it usually has a large cleavage plane misorientation angle, but not necessarily has a large slip plane misorientation angle, and this phenomenon is more significant in martensite microstructure. The ductility of dual-phase steel is not only affected by the proportion of the two phases, but also influenced by the grain refinement of the two phases. Therefore, in order to improve the comprehensive mechanical properties of the dual phase steel, it is necessary to refine the dual phase microstructure from the view of effective slip unit and the effective cleavage unit.

Key words:  dual-phase steel      microstructure      grain boundary      misorientation      grain refinement     
Received:  22 November 2019     
ZTFLH:  TG142  
Fund: National Key Research and Development Program of China(2017YFB0304900)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2019.00398     OR     https://www.ams.org.cn/EN/Y2020/V56/I4/653

PassDQ810AC730

Thickness

mm

Temperature

Rolling reduction ratio / %

Thickness

mm

Temperature

Rolling reduction ratio / %
0801200-801200-
168110015.068110015.0
255105019.755105019.7
344100020.044100020.0
43395025.03495022.7
52783018.22883021.4
62382014.82481014.3
72081013.0227408.3
8---207309.1
Table 1  Rolling schedule of the two steels samples
Fig.1  OM images of microstructures of DQ810 (a) and AC730 (b) steels
Fig.2  Low magnification EBSD maps and grain boundaries with overall misorientation angle above 5° (red lines) of DQ810 (a) and AC730 (b) steelsColor online

Steel

Yield strength

MPa

Tensile strength

MPa

Yield ratio

Uniform elongation

%

Total elongation

%

DQ8105507990.6910.125.6
AC7304577530.6111.922.8
Table 2  Tensile properties of the two steels
Steel-40 ℃-60 ℃-80 ℃
DQ810147, 149, 181 (average: 159)123, 139, 161 (141)28, 43, 14 (28)
AC73050, 44, 38 (44)22, 39, 15 (25)17, 16, 11 (15)
Table 3  Charpy impact toughness of the two steels at a series of low temperatures
Fig.3  EBSD map of DQ810 sample and grain boundaries above 5° (red lines) (a) and misorientation angle of every boundaries along the line between A and B in Fig.3a (b) (F—ferrite, B—bainite, V—variant within bainite or martensite)Color online
Fig.4  EBSD map of AC730 sample and grain boundaries above 5° (red lines) (a) and misorientation angle of every boundaries along the line between A and B in Fig.4a (b)Color online
Fig.5  Boundaries density (histogram) and distribution (line) with overall misorientation angle in DQ810 (a) and AC730 (b) steelsColor online
Fig.6  Boundaries density (histogram) and distribution (line) with cleavage plane misorientation angle in DQ810 (a) and AC730 (b) steelsColor online
Fig.7  Boundaries density (histogram) and distribution (line) with slip plane misorientation angle in DQ810 (a) and AC730 (b) steelsColor online
[1] Xia D X, Wang X L, Li X C, et al. Properties and microstructure of thirdgeneration X90 pipeline steel [J]. Acta Metall. Sin., 2013, 49: 271
[1] 夏佃秀, 王学林, 李秀程等. X90级别第三代管线钢的力学性能与组织特征 [J]. 金属学报, 2013, 49: 271
[2] Nie W J, Shang C J, Guan H L, et al. Control of microstructures of ferrite/bainite (F/B) dual-phase steels and analysis of their resistance to deformation behavior [J]. Acta Metall. Sin., 2012, 48: 298
[2] 聂文金, 尚成嘉, 关海龙等. 铁素体/贝氏体(F/B)双相钢组织调控及其抗变形行为分析 [J]. 金属学报, 2012, 48: 298
[3] Meng D L, Kang Y L, Zheng X F, et al. Effect of two-stage controlled cooling on the microstructure and properties of Mo-containing X80 high-deformability pipeline steel [J]. J. Univ. Sci. Technol. Beijing, 2011, 33: 834
[3] 孟德亮, 康永林, 郑晓飞等. 两阶段控制冷却工艺对含钼X80抗大变形管线钢组织与性能的影响 [J]. 北京科技大学学报, 2011, 33: 834
[4] Zhou C, Yan L, Zhang P, et al. Microstructure and mechanical properties of EH47 high strength brittle crack arrest steel for container ship [J]. Trans. Mater. Heat Treat., 2017, 38(8): 83
[4] 周 成, 严 玲, 张 鹏等. 集装箱船用EH47高止裂钢的组织和性能 [J]. 材料热处理学报, 2017, 38(8): 83
[5] Ishikawa N, Endo S, Kondo J. High performance UOE linepipes [J]. JFE Technol. Rep., 2006, 12: 15
[6] Jiao D T, Cai Q W, Wu H B. Effects of cooling process after rolling on microstructure and yield ratio of high-strain pipeline steel X80 [J]. Acta Metall. Sin., 2009, 45: 1111
[6] 焦多田, 蔡庆伍, 武会宾. 轧后冷却制度对X80级抗大变形管线钢组织和屈强比的影响 [J]. 金属学报, 2009, 45: 1111
[7] Hanamura T, Yin F, Nagai K. Ductile-brittle transition temperature of ultrafine ferrite/cementite microstructure in a low carbon steel controlled by effective grain size [J]. ISIJ Int., 2004, 44: 610
[8] Morito S, Huang X, Furuhara T, et al. The morphology and crystallography of lath martensite in alloy steels [J]. Acta Mater., 2006, 54: 5323
[9] Kitahara H, Ueji R, Tsuji N, et al. Crystallographic features of lath martensite in low-carbon steel [J]. Acta Mater., 2006, 54: 1279
[10] Lambert-Perlade A, Gourgues A F, Pineau A. Austenite to bainite phase transformation in the heat-affected zone of a high strength low alloy steel [J]. Acta Mater., 2004, 52: 2337
[11] Karthikeyan T, Dash M K, Ravikirana K, et al. Effect of prior-austenite grain refinement on microstructure, mechanical properties and thermal embrittlement of 9Cr-1Mo-0.1C steel [J]. J. Nucl. Mater., 2017, 494: 260
[12] Miao C L, Shang C J, Zhang G D, et al. Recrystallization and strain accumulation behaviors of high Nb-bearing line pipe steel in plate and strip rolling [J]. Mater. Sci. Eng., 2010, A527: 4985
[13] Miao C L, Shang C J, Zurob H S, et al. Recrystallization, precipitation behaviors, and refinement of austenite grains in high Mn, high Nb steel [J]. Metall. Mater. Trans., 2012, 43A: 665
[14] Bouyne E, Flower H M, Lindley T C, et al. Use of EBSD technique to examine microstructure and cracking in a bainitic steel [J]. Scr. Mater., 1998, 39: 295
[15] Wang C F, Wang M Q, Shi J, et al. Effect of microstructural refinement on the toughness of low carbon martensitic steel [J]. Scr. Mater., 2008, 58: 492
[16] Tomita Y, Okabayashi K. Effect of microstructure on strength and toughness of heat-treated low alloy structural steels [J]. Metall. Trans., 1986, 17A: 1203
[17] Morito S, Yoshida H, Maki T, et al. Effect of block size on the strength of lath martensite in low carbon steels [J]. Mater. Sci. Eng., 2006, A438-440: 237
[18] Kim M C, Oh Y J, Hong J H. Characterization of boundaries and determination of effective grain size in Mn-Mo-Ni low alloy steel from the view of misorientation [J]. Scr. Mater., 2000, 43: 205
[19] Hwang B, Kim Y G, Lee S, et al. Effective grain size and Charpy impact properties of high-toughness X70 pipeline steels [J]. Metall. Mater. Trans., 2005, 36A: 2107
[20] Miao C L, Shang C J, Wang X M, et al. Microstructure and toughness of HAZ in X80 pipeline steel with high Nb content [J]. Acta Metall. Sin., 2010, 46: 541
[20] 缪成亮, 尚成嘉, 王学敏等. 高Nb X80管线钢焊接热影响区显微组织与韧性 [J]. 金属学报, 2010, 46: 541
[21] Lambert A, Garat X, Sturel T, et al. Application of acoustic emission to the study of cleavage fracture mechanism in a HSLA steel [J]. Scr. Mater., 2000, 43: 161
[22] You Y, Shang C J, Nie W J, et al. Investigation on the microstructure and toughness of coarse grained heat affected zone in X-100 multi-phase pipeline steel with high Nb content [J]. Mater. Sci. Eng., 2012, A558: 692
[23] Li X D, Ma X P, Subramanian S V, et al. Influence of prior austenite grain size on martensite-austenite constituent and toughness in the heat affected zone of 700 MPa high strength linepipe steel [J]. Mater. Sci. Eng., 2014, A616: 141
[24] Gourgues A F, Flower H M, Lindley T C. Electron backscattering diffraction study of acicular ferrite, bainite, and martensite steel microstructures [J]. Mater. Sci. Technol., 2000, 16: 26
[25] Morris J W, Lee C S, Guo Z. The Nature and consequences of coherent transformations in steel [J]. ISIJ Int., 2003, 43: 410
[26] Ghosh A, Kundu S, Chakrabarti D. Effect of crystallographic texture on the cleavage fracture mechanism and effective grain size of ferritic steel [J]. Scr. Mater., 2014, 81: 8
[27] Guo Z, Lee C S, Morris J W. On coherent transformations in steel [J]. Acta Mater., 2004, 52: 5511
[28] Wang X L, Ma X P, Wang Z Q, et al. Carbon microalloying effect of base material on variant selection in coarse grained heat affected zone of X80 pipeline steel [J]. Mater. Charact., 2019, 149: 26
[29] Stormvinter A, Miyamoto G, Furuhara T, et al. Effect of carbon content on variant pairing of martensite in Fe-C alloys [J]. Acta Mater., 2012, 60: 7265
[30] Kaneshita T, Miyamoto G, Furuhara T. Variant selection in grain boundary nucleation of bainite in Fe-2Mn-C alloys [J]. Acta Mater., 2017, 127: 368
[31] Morris J W. Stronger, tougher steels [J]. Science, 2008, 320: 1022
[32] Gui H, Gao X X, Bai Y, et al. Variant selection of bainite on the surface of allotriomorphic ferrite in a low carbon steel [J]. Mater. Charact., 2012, 67: 34
[33] Liu D S, Luo M, Cheng B G, et al. Microstructural evolution and ductile-to-brittle transition in a low-carbon MnCrMoNiCu heavy plate steel [J]. Metall. Mater. Tran., 2018, 49A: 4918
[34] Liu S L, Li X C, Guo H, et al. Selective role of bainitic lath boundary in influencing slip systems and consequent deformation mechanisms and delamination in high-strength low-alloy steel [J]. Philos. Mag., 2018, 98: 934
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[6] XU Yongsheng, ZHANG Weigang, XU Lingchao, DAN Wenjiao. Simulation of Deformation Coordination and Hardening Behavior in Ferrite-Ferrite Grain Boundary[J]. 金属学报, 2023, 59(8): 1042-1050.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[9] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[10] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[11] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[12] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[13] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[14] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[15] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
No Suggested Reading articles found!