Please wait a minute...
Acta Metall Sin  2021, Vol. 57 Issue (10): 1320-1332    DOI: 10.11900/0412.1961.2020.00373
Research paper Current Issue | Archive | Adv Search |
Model of Eutectic Transformation Involving Intermetallic Compound
XU Junfeng1,2(), ZHANG Baodong1, Peter K Galenko2
1.School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China
2.Otto Schott Institute of Materials Research, Friedrich-Schiller-Universität Jena, 07743, Germany
Cite this article: 

XU Junfeng, ZHANG Baodong, Peter K Galenko. Model of Eutectic Transformation Involving Intermetallic Compound. Acta Metall Sin, 2021, 57(10): 1320-1332.

Download:  HTML  PDF(1463KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The classical eutectic growth theory, first developed by Jackson and Hunt in 1966, is simple and easy to use. However, the derivation of the classical model does not consider the model changes when one of the eutectic phases in transformation is an intermetallic compound. Moreover, the derivation of the model does not demonstrate the mathematical method to solve the diffusion equation and determine the Fourier coefficient, and without this, it is difficult to deeply understand and master the theoretical application. Based on the classical Jackson-Hunt theory, this study derives the eutectic growth model considering the compound phases and demonstrates the process involved in the solution of the diffusion equation to determine the solute distribution coefficient. The steps for using the model are supplemented and then the application methods of other similar models in eutectic transformations involving the compound phase are provided. The calculation of the model shows that under the same undercooling, the eutectic growth rate increases with the decrease of the compound phase concentration (CB). This parameter change compensates for the insufficient growth resistance of the compound phase owing to the small solute distribution coefficient. Therefore, the span of the eutectic phase diagram with the compound phase involved in the transition is narrowed; the smaller the solute partition coefficient of the eutectic phase, narrower is the phase diagram span.

Key words:  solidification      eutectic growth      undercooling      growth velocity     
Received:  18 September 2020     
ZTFLH:  TG111.4  
Fund: National Natural Science Foundation of China(51971166);Science and Technology Program of Shaanxi Province(2016KJXX-87);Foundation of Shaanxi Provincial Department of Education(18JS050)
About author:  XU Junfeng, associate professor, Tel: 13572495176, E-mail: xujunfeng@mail.nwpu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2020.00373     OR     https://www.ams.org.cn/EN/Y2021/V57/I10/1320

Fig.1  Phase diagrams containing compound phases(TE is the eutectic equilibrium temperature; CE is the eutectic concentration; mα and mβ are theliquidus line slopes on α-phase and β-phase, respectively; Csα and ΔCsβ are the concentrations in the solid of α-phase and β-phase, respectively;ΔCα, ΔCβ are the concentration differences between phases α, β and eutectic point (TE, CE) respectively; ΔC0 is concentration differences between α phase and β phase; CB is right-hand-side concentration of phase diagrams; kα, kβare solute distribution coefficients of α phase and β phase, respectively)
Fig.2  The moving and the stationary coordinate systems of the solidified interface (Sα and Sβ represent the half of interlamellar spacing for each phase such that λ = 2(Sα + Sβ) is the lamellar spacing; V is the growth velocity; θα and θβ are the contact angles at the triple point junction)
Fig.3  Schematic diagram for determining solute distribution coefficient (αα and αβ are the points where the liquid phase and the solid phase intersect)
Fig.4  Phase diagrams of Al-Al2Cu alloy[30] (a) and CuZr-CuZr2 alloy[31] (b) (T—temperature)
ParameterUnitValueParameterUnitValue
Csα%2.5Csβ%31.9
mαK·%-16.48TEK812
mβK·%-16.70CE%17.1
CB%33.33C%17.1
ΓαK·m2.358 × 10-7αm2·s-11.5 × 10-6
ΓβK·m5.54 × 10-8Dm2·s-13 × 10-9
θα(°)70θβ(°)52
Table 1  The parameters for the model calculation of Al-Al2Cu eutectic growth[30]
Fig.5  Results of the experiments and calculation of alloys
ParameterUnitValueParameterUnitValue
ΓαK·m2.2 × 10-7Csα%2.5
ΓβK·m2.2 × 10-7Csβ%31.9
mαK·%-13.02TEK1195
mβK·%-16.47αm2·s-11.5 × 10-6
θα(°)45μαm·K-1·s-10.1
θβ(°)45μβm·K-1·s-10.1
CB%66.67VDm·s-10.12
C%54CE%54.3
Table 2  The parameters for the model calculation of CuZr-CuZr2 eutectic growth[31]
Fig.6  Influence of composition CB on the calculation results at the two-phase interfaces
1 Zener C. Kinetics of the decomposition of austenite [J]. Trans. Am. Inst. Min. Metall. Eng., 1946, 167: 550
2 Tiller M. The role of interfacial energy during solid state phase transformations [J]. Jernkont. Ann., 1957, 141: 757
3 Tiller W. Liquid Metals and Solidification [M]. Cleveland: American Society for Metals, 1958: 276
4 Jackson K A, Hunt J D. Lamellar and rod eutectic growth [J]. Trans. Metall. Soc. AIME, 1966, 236: 1129
5 Donaghey L F, Tiller W A. On the diffusion of solute during the eutectoid and eutectic transformations, Part I [J]. Mater. Sci. Eng., 1968, A3: 231
6 Trivedi R, Magnin P, Kurz W. Theory of eutectic growth under rapid solidification conditions [J]. Acta Metall., 1987, 35: 971
7 Kurz W, Trivedi R. Eutectic growth under rapid solidification conditions [J]. Metall. Trans., 1991, 22A: 3051
8 Zheng L L, Larson Jr D L, Zhang H. Revised form of Jackson-Hunt theory: Application to directional solidification of MnBi/Bi eutectics [J]. J. Cryst. Growth, 2000, 209: 110
9 Ludwig A, Leibbrandt S. Generalised ‘Jackson-Hunt’ model for eutectic solidification at low and large Peclet numbers and any binary eutectic phase diagram [J]. Mater. Sci. Eng., 2004, A375-377: 540
10 Li J F, Zhou Y H. Eutectic growth in bulk undercooled melts [J]. Acta Mater., 2005, 53: 2351
11 Gao J R. A model for free growth of a lamellar eutectic dendrite with an incident flow [J]. Philos. Trans. Roy. Soc., 2018, 376A: 20170209
12 Li M J, Kuribayashi K. Nucleation-controlled microstructures and anomalous eutectic formation in undercooled Co-Sn and Ni-Si eutectic melts [J]. Metall. Mater. Trans., 2003, 34A: 2999
13 Wei X X, Lin X, Xu W, et al. Remelting-induced anomalous eutectic formation during solidification of deeply undercooled eutectic alloy melts [J]. Acta Mater., 2015, 95: 44
14 Liu L, Li J F, Zhou Y H. Solidification of undercooled eutectic alloys containing a third element [J]. Acta Mater, 2009, 57: 1536
15 Wang N, Kalay Y E, Trivedi R. Eutectic-to-metallic glass transition in the Al-Sm system [J]. Acta Mater., 2011, 59: 6604
16 Dong H, Chen Y Z, Shan G B, et al. On the nonequilibrium interface kinetics of rapid coupled eutectic growth [J]. Metall. Mater. Trans., 2017, 48A: 3823
17 Magnin P, Trivedi R. Eutectic growth: A modification of the Jackson and Hunt theory [J]. Acta Metall. Mater., 1991, 39: 453
18 Catalina A V, Sen S, Stefanescu D M. A new analytical approach to predict spacing selection in lamellar and rod eutectic systems [J]. Metall. Mater. Trans., 2003, 34A: 383
19 Meng G H, Lin X. Characteristic scale selection of lamellar spacings in binary eutectic solidification [J]. Acta Phys. Sin., 2014, 63: 068104
孟广慧, 林 鑫. 二元层片共晶凝固过程的特征尺度选择 [J]. 物理学报, 2014, 63: 068104
20 Wang H F, Liu F, Herlach D M. Kinetics of triple-junctions in eutectic solidification: A sharp interface model [J]. J. Mater. Sci., 2015, 50: 176
21 Galenko P K, Herlach D M. Diffusionless crystal growth in rapidly solidifying eutectic systems [J]. Phys. Rev. Lett., 2006, 96: 150602
22 Xu J F, Galenko P K. Effects of local nonequilibrium in rapid eutectic solidification—Part 1: Statement of the problem and general solution [J]. Math. Methods Appl. Sci., doi: 10.1002/mma.6960
23 Xu J F, Rettenmayr M, Galenko P K. Effects of local nonequilibrium in rapid eutectic solidification—Part 2: Analysis of effects and comparison to experiment [J]. Math. Methods Appl. Sci., doi: 10.1002/mma.7004
24 Azadehranjbar S, Shield J E. Multiple origins of anomalous eutectic microstructure in rapidly solidified Mg-Al alloy [J]. Materialia,
2020, 9: 100625
25 Fick A. On liquid diffusion [J]. J. Membr. Sci., 1955, 100: 33
26 Trivedi R, Kurz W. Microstructure selection in eutectic alloy systems [A]. Solidification Processing of Eutectic Alloys [C]. Warrendale, PA: TMS, 1988: 3
27 Trivedi R, Kurz W. Modeling of solidification microstructures in concentrated solutions and intermetallic systems [J]. Metall. Trans., 1990, 21A: 1311
28 Aziz M J. Model for solute redistribution during rapid solidification [J]. J. Appl. Phys., 1982, 53: 1158
29 Galenko P K, Jou D. Rapid solidification as non-ergodic phenomenon [J]. Phys. Rep., 2019, 818: 1
30 Tang L. Research on the microstructure evolution of Al-38.5%Cu hypereutectic alloy at constant and changing growth rates under directional solidification [D]. Xi'an: Northwestern Polytechnical University, 2007
唐 玲. Al-38.5%Cu过共晶合金恒速和跃迁变速定向凝固下的组织演化研究 [D]. 西安: 西北工业大学, 2007
31 Fopp P, Kolbe M, Kargl F, et al. Unexpected behavior of the crystal growth velocity at the hypercooling limit [J]. Phys. Rev. Mater. 2020, 4: 073405
32 Teppa O, Taskinen P. Thermodynamic assessment of Ni-B phase diagram [J]. Mater. Sci. Technol., 1993, 9: 205
33 Xu J F, Liu F, Zhang D. Phase selection of undercooled solidification of Ni-4.5wt% B alloy [J]. J. Mater. Res., 2013, 28: 3347
34 Raghavan V. B-Co-Fe (boron-cobalt-iron) [J]. J. Phase Equilib. Diffus., 2012, 33: 392
35 Tokunaga T, Ohtani H, Hasebe M. Thermodynamic study of phase equilibria in the Ni-Fe-B system [J]. J. Phase Equilib., 2005, 46: 1193
[1] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[2] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[4] LIU Jihao, ZHOU Jian, WU Huibin, MA Dangshen, XU Huixia, MA Zhijun. Segregation and Solidification Mechanism in Spray-Formed M3 High-Speed Steel[J]. 金属学报, 2023, 59(5): 599-610.
[5] SU Zhenqi, ZHANG Congjiang, YUAN Xiaotan, HU Xingjin, LU Keke, REN Weili, DING Biao, ZHENG Tianxiang, SHEN Zhe, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Formation and Evolution of Stray Grains on Remelted Interface in the Seed Crystal During the Directional Solidification of Single-Crystal Superalloys Assisted by Vertical Static Magnetic Field[J]. 金属学报, 2023, 59(12): 1568-1580.
[6] LIANG Chen, WANG Xiaojuan, WANG Haipeng. Formation Mechanism of B2 Phase and Micro-Mechanical Property of Rapidly Solidified Ti-Al-Nb Alloy[J]. 金属学报, 2022, 58(9): 1169-1178.
[7] LI Shanshan, CHEN Yun, GONG Tongzhao, CHEN Xingqiu, FU Paixian, LI Dianzhong. Effect of Cooling Rate on the Precipitation Mechanism of Primary Carbide During Solidification in High Carbon-Chromium Bearing Steel[J]. 金属学报, 2022, 58(8): 1024-1034.
[8] LI Yanqiang, ZHAO Jiuzhou, JIANG Hongxiang, HE Jie. Microstructure Formation in Directionally Solidified Pb-Al Alloy[J]. 金属学报, 2022, 58(8): 1072-1082.
[9] GUO Dongwei, GUO Kunhui, ZHANG Fuli, ZHANG Fei, CAO Jianghai, HOU Zibing. A New Method for CET Position Determination of Continuous Casting Billet Based on the Variation Characteristics of Secondary Dendrite Arm Spacing[J]. 金属学报, 2022, 58(6): 827-836.
[10] DING Zongye, HU Qiaodan, LU Wenquan, LI Jianguo. In Situ Study on the Nucleation, Growth Evolution, and Motion Behavior of Hydrogen Bubbles at the Liquid/ Solid Bimetal Interface by Using Synchrotron Radiation X-Ray Imaging Technology[J]. 金属学报, 2022, 58(4): 567-580.
[11] WU Guohua, TONG Xin, JIANG Rui, DING Wenjiang. Grain Refinement of As-Cast Mg-RE Alloys: Research Progress and Future Prospect[J]. 金属学报, 2022, 58(4): 385-399.
[12] ZHANG Lei, SHI Tao, HUANG Huogen, ZHANG Pei, ZHANG Pengguo, WU Min, FA Tao. Phase Separation and Solidification Sequence of Uranium-Based Amorphous Composites[J]. 金属学报, 2022, 58(2): 225-230.
[13] CHEN Ruirun, CHEN Dezhi, WANG Qi, WANG Shu, ZHOU Zhecheng, DING Hongsheng, FU Hengzhi. Research Progress on Nb-Si Base Ultrahigh Temperature Alloys and Directional Solidification Technology[J]. 金属学报, 2021, 57(9): 1141-1154.
[14] CAO Jianghai, HOU Zibing, GUO Zhongao, GUO Dongwei, TANG Ping. Effect of Superheat on Integral Morphology Characteristics of Solidification Structure and Permeability in Bearing Steel Billet[J]. 金属学报, 2021, 57(5): 586-594.
[15] ZHANG Zhuang, LI Haiyang, ZHOU Lei, LIU Huasong, TANG Haiyan, ZHANG Jiaquan. As-Cast Spot Segregation of Gear Steel and Its Evolution in the Rolled Products[J]. 金属学报, 2021, 57(10): 1281-1290.
No Suggested Reading articles found!