Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (12): 1513-1519    DOI: 10.3724/SP.J.1037.2011.00364
论文 Current Issue | Archive | Adv Search |
EFFECT OF MULTIPASS HOT ROLLING ON THE PROPERTY AND BONDING INTERFACE OF CLAD BAR
XIE Hongbiao, GAO Yanan, WANG Tao, XIAO Hong
Mechanical Engineering College, Yanshan University, Qinhuangdao 066004
Cite this article: 

XIE Hongbiao GAO Yanan WANG Tao XIAO Hong. EFFECT OF MULTIPASS HOT ROLLING ON THE PROPERTY AND BONDING INTERFACE OF CLAD BAR. Acta Metall Sin, 2011, 47(12): 1513-1519.

Download:  PDF(905KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Because of climate and human factors, the corrosion of reinforced steel bar has become one of the important reasons of premature deterioration of concrete buildings and infrastructure. Stainless steel bar cannot be widely used due to its high price. Therefore, stainless steel clad carbon steel bar comes into being. It is a new material used in construction, which is made up of corrosion resistant stainless steel outer layer and carbon steel core. In the present study, an experimental study was conducted to investigate the mechanical property and bonding state of stainless steel clad carbon steel bar. The tensile strength of clad bar and bonding strength of two metals were measured using tension test and shearing test. Then, microscopic morphology, element diffusion and microhardness near the interface were analyzed using OM, SEM, EDS and microhardness tester. The results show that the two metals of the bar extend proportionally in the rolling process. The tensile strength is 550 MPa and the percentage of elongation is 45%. The neck phenomenon in the tensile experiment is obvious and the two metals are undivided in the fracture. With the increment of rolling pass, the bonding between the metals becomes denser and this increases the shearing strength. The max shearing strength is 333 MPa and the typical plastic dimples and shearing slip were observed on the shearing fracture surface.  Element diffusion occurs at the interface where the Cr, Mn, Ni of stainless steel diffuse into carbon steel and the Fe of carbon steel diffuses into stainless steel, and the total width of diffusion distance is about 30 μm. It makes the microhardness of the carbon steel near the interface increased significantly and the value is 399.4 HV which is higher than carbon steel after sixth pass rolling. Therefore, the metallurgical diffusion bonding is formed in the interface of clad bar.
Key words:  clad bar      hot rolling      bonding interface      diffusion     
Received:  10 June 2011     
Fund: 

Supported by National Natural Science Foundation of China (No.51075353) and Natural Science Foundation of Hebei Province (No.E2010001208)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00364     OR     https://www.ams.org.cn/EN/Y2011/V47/I12/1513

[1] Hwang Y M, Hsu H H, Hwang Y L. Int J Mech Sci, 2000; 42: 2417

[2] Kang H, Kim J, Huh M, Engler O. Mater Sci Eng, 2007; A452–453: 347

[3] Lee J, Bae D, Chung W, Kim K, Cho Y. J Mater Process Technol, 2007; 187–188: 546

[4] Soltanalinezhad M, Haerianardakani A. Mater Des, 2009; 30: 1103

[5] Zhang L, Meng L, Zhou S P, Yang F T. Mater Sci Eng, 2004; A371: 65

[6] Bulent K. J Mater Process Technol, 2007; 190: 138

[7] Motarjemi A K, Korcak M, Ventzke V. Int J Pres Ves Pip, 2002; 79: 181

[8] Li S X, Xuan F Z, Tu S T. J Nucl Mater, 2007; 366(1/2): 1

[9] Madaah–Hosseini H R, Kokabi A H. Mater Sci Eng, 2002; A335: 186

[10] Kundu S, Chatterjee S. Mater Sci Eng, 2006; A425(1/2): 107

[11] He P, Yue X, Zhang J. Mater Sci Eng, 2008; A486: 171

[12] Elrefaey A, Tillmann W. J Mater Process Technol, 2009; 209: 2746

[13] Wu C J, Wu Y, Xue Z Y, Liang H, Liu Q. Acta Metall Sin (Engl Lett), 2010; 23: 206

[14] Lesik L, Dyja H, Pilarczyk J W, Wiewiorowska S. Wire J Int, 2001; 34(2): 94

[15] Dyja H, Lesik L, Milenin A, Mroz S. J Mater Process Technol, 2002; 125–126: 731

[16] Berski S, Dyja H, Maranda A, Nowaczewski J, Banaszek G. J Mater Process Technol, 2006; 177: 582

[17] Manesh H, Taheri A. J Mater Process Technol, 2005; 166: 163

[18] Yuan J W, Pang Y H, Li T. J Wuhan Univ Technol, 2011; 26: 111

[19] Dyja H, Mroz S, Milenin A, Lesik L. In: International Rolling Conference ed., 44th MWSP Conference Proceeding, Orlando: Association for Iron & Steel, 2002: 40: 653

[20] Dyja H, Mroz S, Stradomski Z. Metalurgija, 2003; 42(3): 185

[21] Dyja H, Mroz S, Milenin A. J Mater Process Technol, 2004; 153–154: 100

[22] Szota P, Dyja H. J AMME, 2007; 25(1): 55

[23] Mroz S, Szota P, Dyja H, Kawalek A. Metalurgija, 2011; 50(2): 85

[24] Ricardo R. Master Dissertation, Massachusetts Institute of Technology, Cambridge, 2001

[25] Purk Y. Master Dissertation, North Carolina State University, Raleigh, 2003

[26] Gregory W. PhD Thesis, Virginia Polytechnic Institute and State University, Blacksburg, 2007
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] XU Wenguo, HAO Wenjiang, LI Yingju, ZHAO Qingbin, LU Bingyu, GUO Heyi, LIU Tianyu, FENG Xiaohui, YANG Yuansheng. Effects of Trace Aluminum and Titanium on High Temper-ature Oxidation Behavior of Inconel 690 Alloy[J]. 金属学报, 2023, 59(12): 1547-1558.
[3] LIU Lujun, LIU Zheng, LIU Renhui, LIU Yong. Grain Boundary Structure and Coercivity Enhancement of Nd90Al10 Alloy Modified NdFeB Permanent Magnets by GBD Process[J]. 金属学报, 2023, 59(11): 1457-1465.
[4] LI Sai, YANG Zenan, ZHANG Chi, YANG Zhigang. Phase Field Study of the Diffusional Paths in Pearlite-Austenite Transformation[J]. 金属学报, 2023, 59(10): 1376-1388.
[5] SHEN Yingying, ZHANG Guoxing, JIA Qing, WANG Yumin, CUI Yuyou, YANG Rui. Interfacial Reaction and Thermal Stability of the SiCf/TiAl Composites[J]. 金属学报, 2022, 58(9): 1150-1158.
[6] LI Xifeng, LI Tianle, AN Dayong, WU Huiping, CHEN Jieshi, CHEN Jun. Research Progress of Titanium Alloys and Their Diffusion Bonding Fatigue Characteristics[J]. 金属学报, 2022, 58(4): 473-485.
[7] HUA Yu, CHEN Jianguo, YU Liming, SI Yonghong, LIU Chenxi, LI Huijun, LIU Yongchang. Microstructure Evolution and Mechanical Properties of Dissimilar Material Diffusion-Bonded Joint for High Cr Ferrite Heat-Resistant Steel and Austenitic Heat-Resistant Steel[J]. 金属学报, 2022, 58(2): 141-154.
[8] JIANG Weining, WU Xiaolong, YANG Ping, GU Xinfu, XIE Qingge. Formation of Dynamic Recrystallization Zone and Characteristics of Shear Texture in Surface Layer of Hot-Rolled Silicon Steel[J]. 金属学报, 2022, 58(12): 1545-1556.
[9] LIU Zhongwu, HE Jiayi. Several Issues on the Development of Grain Boundary Diffusion Process for Nd-Fe-B Permanent Magnets[J]. 金属学报, 2021, 57(9): 1155-1170.
[10] CHEN Shenghu, RONG Lijian. Oxide Scale Formation on Ultrafine-Grained Ferritic-Martensitic Steel During Pre-Oxidation and Its Effect on the Corrosion Performance in Stagnant Liquid Pb-Bi Eutectic[J]. 金属学报, 2021, 57(8): 989-999.
[11] LI Juan, ZHAO Honglong, ZHOU Nian, ZHANG Yingzhe, QIN Qingdong, SU Xiangdong. Diffusion Bonding of CoCrFeNiCu High-Entropy Alloy to 304 Stainless Steel[J]. 金属学报, 2021, 57(12): 1567-1578.
[12] LIU Chenxi, MAO Chunliang, CUI Lei, ZHOU Xiaosheng, YU Liming, LIU Yongchang. Recent Progress in Microstructural Control and Solid-State Welding of Reduced Activation Ferritic/Martensitic Steels[J]. 金属学报, 2021, 57(11): 1521-1538.
[13] WANG Chao, ZHANG Xu, WANG Yumin, YANG Qing, YANG Lina, ZHANG Guoxing, WU Ying, KONG Xu, YANG Rui. Mechanisms of Interfacial Reaction and Matrix Phase Transition in SiCf /Ti65 Composites[J]. 金属学报, 2020, 56(9): 1275-1285.
[14] SUN Zhengyang, YANG Chao, LIU Wenbo. Phase Field Simulations of the Sintering Process of UO2[J]. 金属学报, 2020, 56(9): 1295-1303.
[15] DING Wen, WANG Xiaojing, LIU Ning, QIN Liang. Diffusion Bonding of Copper and 304 Stainless Steel with an Interlayer of CoCrFeMnNi High-Entropy Alloy[J]. 金属学报, 2020, 56(8): 1084-1090.
No Suggested Reading articles found!