Please wait a minute...
Acta Metall Sin  2020, Vol. 56 Issue (8): 1084-1090    DOI: 10.11900/0412.1961.2019.00404
Current Issue | Archive | Adv Search |
Diffusion Bonding of Copper and 304 Stainless Steel with an Interlayer of CoCrFeMnNi High-Entropy Alloy
DING Wen, WANG Xiaojing(), LIU Ning(), QIN Liang
School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
Download:  HTML  PDF(1698KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

During the dissimilar materials bonding of copper and 304 stainless steel, micro-voids and micro-cracks can propagate into the bond region because of Kirkendall effect, and have a strong impact on the mechanical and physical properties of conjunct. Copper and 304 stainless steel was bonded by utilizing vacuum solid-state diffusion method with an interlayer of CoCrFeMnNi high-entropy alloy, and the influence of temperature on diffusion reaction mechanism and properties was investigated by using SEM, EDS and microhardness test. The second Fick's law was adopted to calculate the diffusion coefficient of Cu/Fe in CoCrFeMnNi high-entropy alloy. The phase components of the diffusion interface were detected by XRD, and the famous phase-selection-criteria was also used to discuss the phase formation. The results showed that the diffusion interface was well bonded and all the elements diffused mutually at the temperature range of 800~900 ℃, the diffusion rate of Cu/Fe in CoCrFeMnNi high-entropy alloy was increased with the increasing temperature, and no intermetallic compounds were detected at the diffusion interface, and the microhardness increased continuously near the diffusion interface. It was investigated that CoCrFeMnNi high-entropy alloy can be used as an effective diffusion barriers for dissimilar materials bonding of Cu/304 stainless steel.

Key words:  high-entropy alloy      vacuum diffusion      diffusion rate      reaction mechanism     
Received:  25 November 2019     
ZTFLH:  TG457.1  
Fund: National Natural Science Foundation of China(51541104);Postgraduate Research and Practice Innovation Program of Jiangsu Province(KYCX19-1674)
Corresponding Authors:  WANG Xiaojing,LIU Ning     E-mail:  wxj@just.edu.cn;lynnliu@just.edu.cn

Cite this article: 

DING Wen, WANG Xiaojing, LIU Ning, QIN Liang. Diffusion Bonding of Copper and 304 Stainless Steel with an Interlayer of CoCrFeMnNi High-Entropy Alloy. Acta Metall Sin, 2020, 56(8): 1084-1090.

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2019.00404     OR     https://www.ams.org.cn/EN/Y2020/V56/I8/1084

MaterialMnCrCoNiCSiPSMoCuFe
304SS1.9318.98-9.330.110.650.030.030.320.17Bal.
Electrolytic Cu--------99.95-
HEA19.2319.0720.5021.88------19.32
Table 1  Chemical compositions of welding materials
ElementVECAtomic radius / nmMelting point / ℃
Co90.1251495
Cr60.1281857
Fe80.1261538
Mn70.1351244
Ni100.1241453
Cu110.1281085
HEA--1290~1340
Table 2  Physiochemical properties for main multi-component alloys[25]
Fig.1  SEM images and elemental composition distributions of Cu/HEA/304SS diffusion samples produced at 800 ℃ (a), 850 ℃ (b) and 900 ℃ (c)
Fig.2  XRD spectra of the Cu/HEA/304SS diffusion couple after annealing at 850 ℃ (Interface—interface of Cu/HEA/304SS diffusion couple. Inset shows the enlarged detail of the diffraction peaks near 44°)
Fig.3  The microhardness near the interface at different temperatures (a) and the distribution of the hardness of the diffusion couple interface at 850 ℃ (b)
Color online
AtomCrFeMnNiCu
Co-4-1-506
Cr--12-712
Fe--0-213
Mn----84
Ni----4
Table 3  Mixing enthalpy (ΔHmix) of element pairs [25]

Temperature

Diffusion coupleElement composition (atomic fraction / %)
CoCrFeMnNiCu
800Cu/HEA side16.016.716.115.716.519.0
HEA/304SS side17.216.032.316.717.8-
850Cu/HEA side17.517.915.814.720.114.0
HEA/304SS side16.318.230.216.418.9-
900Cu/HEA side19.019.017.611.018.415.0
HEA/304SS side17.716.631.317.417.0-
Table 4  Chemical compositions of different regions of diffusion couple

Temperature

Diffusion couple

ΔHmix

(kJ·mol-1)

δ

%

VEC

ΔSmix

(J·K-1·mol-1)

Phase
800Cu/HEA side2.082.78.5712.26fcc
HEA/304SS side-3.442.98.0413.03fcc
850Cu/HEA side0.482.78.4912.54fcc
HEA/304SS side-3.602.88.0113.13fcc
900Cu/HEA side1.152.58.5212.40fcc
HEA/304SS side-3.452.98.0113.08fcc
Table 5  The calculation results of various parameters for Cu/HEA/304SS
[1] Yilmaz O, Aksoy M. Investigation of micro-crack occurrence conditions in diffusion bonded Cu-304 stainless steel couple [J]. J. Mater. Process. Technol., 2002, 121: 136
doi: 10.1016/S0924-0136(01)01224-9
[2] Yilmaz O, Çelik H. Electrical and thermal properties of the interface at diffusion-bonded and soldered 304 stainless steel and copper bimetal [J]. J. Mater. Process. Technol., 2003, 141: 67
doi: 10.1016/S0924-0136(03)00029-3
[3] Gao L, Li Z X, Li G D, et al. Research status and development of copper-steel welding [J]. Weld. Join., 2006, (12): 16
(高 禄, 栗卓新, 李国栋等. 铜-钢异种金属焊接的研究现状和进展 [J]. 焊接, 2006, (12): 16)
[4] Patra S, Arora K S, Shome M, et al. Interface characteristics and performance of magnetic pulse welded copper-steel tubes [J]. J. Mater. Process. Technol., 2017, 245: 278
doi: 10.1016/j.jmatprotec.2017.03.001
[5] Fu J, Huang J, Yao C W, et al. Laser butt welding for copper-steel joint [J]. Chin. J. Lasers, 2009, 36: 1256
doi: 10.3788/JCL
(付 俊, 黄 坚, 姚成武等. 铜钢激光对接焊研究 [J]. 中国激光, 2009, 36: 1256)
[6] Sabetghadam H, Hanzaki A Z, Araee A. Diffusion bonding of 410 stainless steel to copper using a nickel interlayer [J]. Mater. Charact., 2010, 61: 626
doi: 10.1016/j.matchar.2010.03.006
[7] Guo Y F, Wang B B, Guo Y Y, et al. Microstructure and mechanical property of two-step vacuum diffusion welded joint of ZK60/5083 using zinc as interlayer [J]. Hot Work. Technol., 2018, 47(17): 55
(郭雨菲, 王宾宾, 郭阳阳等. Zn作中间层的ZK60/5083二次真空扩散焊接头显微组织与力学性能 [J]. 热加工工艺, 2018, 47(17): 55)
[8] Chen Y F, Zhang Z L, Qiu R F. Microstructure and property of diffusion welded titanium alloy/stainless steel joint with Nb and Cu as composite interlayer [J]. Mater. Mech. Eng., 2018, 42(10): 77
(陈一帆, 张占领, 邱然锋. 以铌+铜为复合中间层扩散焊接钛合金/不锈钢接头的组织与性能 [J]. 机械工程材料, 2018, 42(10): 77)
[9] Liu Y L. The study of diffusion welding of high entropy alloy with aluminum, copper and stainless steel [D]. Lanzhou: Lanzhou University of Technology, 2016
(刘玉林. 高熵合金与铝、铜及不锈钢异种材料扩散焊研究 [D]. 兰州: 兰州理工大学, 2016)
[10] Yeh J W, Lin S J, Chin T S, et al. Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements [J]. Metall. Mater. Trans., 2004, 35A: 2533
[11] Tong C J, Chen M R, Yeh J W, et al. Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multi principal elements [J]. Metall. Mater. Trans., 2005, 36A: 1263
[12] Liu N, Ding W, Wang X J, et al. Phases, microstructures and properties of multi-component FeCoNi-based alloys [J]. Mater. Sci. Technol., 2020, 36: 654
doi: 10.1080/02670836.2020.1726017
[13] Chen Y Y, Duval T, Hung U D, et al. Microstructure and electrochemical properties of high entropy alloys—A comparison with type-304 stainless steel [J]. Corros. Sci., 2005, 47: 2257
doi: 10.1016/j.corsci.2004.11.008
[14] Wu J M, Lin S J, Yeh J W, et al. Adhesive wear behavior of AlXCoCrCuFeNi high-entropy alloys as a function of aluminum content [J]. Wear, 2006, 261: 513
doi: 10.1016/j.wear.2005.12.008
[15] Chen C, Liu N, Zhang J, et al. Microstructure stability and oxidation behaviour of (FeCoNiMo)90(Al/Cr)10 high-entropy alloys [J]. Mater. Sci. Technol., 2019, 35: 1883
doi: 10.1080/02670836.2019.1652785
[16] Wu P H, Peng Z, Liu N, et al. The effect of Mn content on the microstructure and properties of CoCrCu0.1Fe0.15Mo1.5MnxNi near equiatomic alloys [J]. Mater. Trans., 2016, 57: 5
doi: 10.2320/matertrans.M2015295
[17] Wu P H, Liu N, Yang W, et al. Microstructure and solidification behavior of multi-component CoCrCux FeMoNi high-entropy alloys [J]. Mater. Sci. Eng., 2015, A642: 142
[18] Yeh J W. Physical metallurgy of high-entropy alloys [J]. JOM, 2015, 67: 2254
doi: 10.1007/s11837-015-1583-5
[19] Cai X Y, Tang Q H, Dai P Q. Microstructure evolution of CoCr-FeMnNi high-entropy alloy during quasi-static tensile [J]. Chin. J. Nonferrous Met., 2018, 28: 135
(蔡小勇, 唐群华, 戴品强. 准静态拉伸过程中CoCrFeMnNi高熵合金显微组织的演变 [J]. 中国有色金属学报, 2018, 28: 135)
[20] Tsai K Y, Tsai M H, Yeh J W. Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys [J]. Acta Mater., 2013, 61: 4887
doi: 10.1016/j.actamat.2013.04.058
[21] Kireeva I V, Chumlyakov Y I, Pobedennaya Z V, et al. Orientation dependence of twinning in single crystalline CoCrFeMnNi high-entropy alloy [J]. Mater. Sci. Eng., 2017, A705: 176
[22] Park N, Lee B J, Tsuji N. The phase stability of equiatomic CoCr-FeMnNi high-entropy alloy: Comparison between experiment and calculation results [J]. J. Alloys Compd., 2017, 719: 189
doi: 10.1016/j.jallcom.2017.05.175
[23] Chen K, Zhai Q Y, Tian J, et al. Resistance welding of TA2 and Q235 base on high entropy interlayer alloys [J]. Mod. Weld., 2013, (8): 36
(陈 凯, 翟秋亚, 田 健等. 基于高熵合金中间层的TA2与Q235电阻焊研究 [J]. 现代焊接, 2013, (8): 36)
[24] Tsai M H, Yeh J W, Gan J Y. Diffusion barrier properties of AlMoNbSiTaTiVZr high-entropy alloy layer between copper and silicon [J]. Thin Solid Films, 2008, 516: 5527
doi: 10.1016/j.tsf.2007.07.109
[25] Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element [J]. Mater. Trans., 2005, 46: 2817
doi: 10.2320/matertrans.46.2817
[26] Lu J B, Peng Z Q, Ma M X, et al. CoCrCuFeMnNi high-entropy alloy coating prepared by plasma cladding on Q235 steel [J]. Heat Treat. Met., 2016, 41(4): 51
doi: 10.13251/j.issn.0254-6051.2016.04.012
(卢金斌, 彭竹琴, 马明星等. Q235钢等离子熔覆 CoCrCuFeMnNi高熵合金涂层 [J]. 金属热处理, 2016, 41(4): 51)
doi: 10.13251/j.issn.0254-6051.2016.04.012
[27] Luo J, Sheng G M, Yuan X J. Diffusion bonding of SSNC 304L/Cu [J]. J Cent. South Univ. (Sci. Technol.), 2013, 44: 55
(罗 军, 盛光敏, 袁新建. 表面自纳米化304L不锈钢/T2铜扩散连接 [J]. 中南大学学报(自然科学版), 2013, 44: 55)
[28] Zhang Y. Amorphous and High Entropy Alloys [M]. Beijing: Science Press, 2010: 78
(张 勇. 非晶和高熵合金 [M]. 北京: 科学出版社, 2010: 78)
[29] Guo S, Ng C, Lu J, et al. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys [J]. J. Appl. Phys., 2011, 109: 103505
doi: 10.1063/1.3587228
[1] CAO Yuhan,WANG Lilin,WU Qingfeng,HE Feng,ZHANG Zhongming,WANG Zhijun. Partially Recrystallized Structure and Mechanical Properties of CoCrFeNiMo0.2 High-Entropy Alloy[J]. 金属学报, 2020, 56(3): 333-339.
[2] FENG Yefei,ZHOU Xiaoming,ZOU Jinwen,WANG Chaoyuan,TIAN Gaofeng,SONG Xiaojun,ZENG Weihu. Interface Reaction Mechanism Between SiO2 and Matrix and Its Effect on the Deformation Behavior of Inclusionsin Powder Metallurgy Superalloy[J]. 金属学报, 2019, 55(11): 1437-1447.
[3] Haiou YANG, Xuliang SHANG, Lilin WANG, Zhijun WANG, Jincheng WANG, Xin LIN. Effect of Constituent Elements on the Corrosion Resistance of Single-Phase CoCrFeNi High-Entropy Alloys in NaCl Solution[J]. 金属学报, 2018, 54(6): 905-910.
[4] Zhaoping LU, Zhifeng LEI, Hailong HUANG, Shaofei LIU, Fan ZHANG, Dabo DUAN, Peipei CAO, Yuan WU, Xiongjun LIU, Hui WANG. Deformation Behavior and Toughening of High-Entropy Alloys[J]. 金属学报, 2018, 54(11): 1553-1566.
[5] Dawei WANG,Shichao XIU. Effect of Bonding Temperature on the Interfacial Micro-structure and Performance of Mild Steel/Austenite Stainless Steel Diffusion-Bonded Joint[J]. 金属学报, 2017, 53(5): 567-574.
[6] Jun LI,Wenpeng LIU,Yibin REN,Minggang SHEN,Ke YANG. Preparation of Micro Porous Stainless Steel by Physical Vacuum Dealloying[J]. 金属学报, 2017, 53(5): 524-530.
[7] Chenliang WU,Song ZHANG,Chunhua ZHANG,Meng GUAN,Junzhe TAN. PHASE EVOLUTION OF FeCoCrAlCuNiMox COATINGS BY LASER HIGH-ENTROPY ALLOYING ON STAINLESS STEELS[J]. 金属学报, 2016, 52(7): 797-803.
[8] LUO Xinmin, WANG Xiang, CHEN Kangmin, LU Jinzhong, WANG Lan, ZHANG Yongkang. SURFACE LAYER HIGH-ENTROPY STRUCTURE AND ANTI-CORROSION PERFORMANCE OF AERO-ALUMINUM ALLOY INDUCED BY LASER SHOCK PROCESSING[J]. 金属学报, 2015, 51(1): 57-66.
[9] ZHANG Lidong, WANG Fei, CHEN Shunli, WANG Yuan. FABRICATION AND THERMAL STABILITY OF AlCrTaTiNi/(AlCrTaTiNi)N BILAYER DIFFUSION BARRIER[J]. 金属学报, 2013, 49(12): 1611-1616.
[10] ZHANG Sufang, YANG Xiao, ZHANG Yong. PROCESSING AND PROPERTIES OF Al3CrCuFeNi2 SINGLE CRYSTAL HIGH--ENTROPY ALLOY[J]. 金属学报, 2013, 49(11): 1473-1480.
[11] ZHAI Qiuya JIA Chen KANG Zaixiang XU Jinfeng. MICROSTRUCTURE AND CAPACITOR DISCHARGE\par WELDING CHARACTERISTICS OF QUENCHED Cu25Al10Ni25Fe20Co20 HIGH-ENTROPY ALLOY FOILS[J]. 金属学报, 2011, 47(11): 1378-1381.
[12] WANG Guangjun WANG Dezhi ZHOU Jie WU Zhuangzhi XU Bing. ELECTROLESS PLATING Cu ON Mo POWDER AND ITS REACTION MECHANISM[J]. 金属学报, 2009, 45(4): 405-409.
[13] . [J]. 金属学报, 2007, 43(10): 1020-1024 .
[1] . [J]. Acta Metall Sin, 2000, 36(9): 993 -996 .
[2] LIU Bing; LIU Lin; SUN Min; QIU Chunlei; CHEN Qi. Influence of Cr Micro-Addition on the Glass Forming Ability and Corrosion Resistance of Cu--Based Bulk Metallic Glasses[J]. Acta Metall Sin, 2005, 41(7): 738 -742 .
[3] . [J]. Acta Metall Sin, 2002, 38(2): 131 -134 .
[4] . Study on Inhibition of New Type Compound Inhibitor in NaCl Solution[J]. Acta Metall Sin, 2007, 43(9): 989 -993 .
[5] . MODELING DYNAMIC RECRYSTALLIZATION OF PURE COPPER USING CELLULAR AUTOMATON METHOD[J]. Acta Metall Sin, 2008, 44(3): 292 -296 .
[6] ZHOU Dianwu XU Shaohua ZHANG Fuquan PENG Ping LIU Jinshui. FIRST-PRINCIPLES CALCULATIONS OF STRUCTURAL STABILITIES AND ELASTIC PROPERTIES OF AB2 TYPE INTERMETALLICS IN ZA62 MAGNESIUM ALLOY[J]. Acta Metall Sin, 2010, 46(1): 97 -103 .
[7] HUANG Zongze;XIAO Hingguo;XIAO Zeqiang(Northeastern University; Shenyang 110006); S. D. SINGH(National Metallurgical Laboratory; Jamshedpur; India;831007) (Manuscript recieved 1995-06-29). FOAMING BEHAVIOUR AND PARAMETERS OF FeO-BEARING SLAGS[J]. Acta Metall Sin, 1996, 32(3): 278 -283 .
[8] DAI Zurong;LI Baocheng Taiyuan Institute of Mechanical Engineering; WU Houzheng;CHEN Yuru;LIU Wenxi Tianjin University. MARTENSITIC TRANSFORMATION IN (Y,Mg)-PSZ CERAMICS[J]. Acta Metall Sin, 1991, 27(3): 86 -88 .
[9] LU Jian;WANG Yinjun;MA Ruzhang Institute of Physics; Academia Sinica; Beijing University of Science and Technology Beijing LU Jian; Department No.2; Institute of Metallurgy; Shoudu Iron and Steel Company;Beijing 100085. THERMAL STABILITY AND PERPENDICULAR ANISOTROPY OF AMORPHOUS TbFeCo FILMS[J]. Acta Metall Sin, 1989, 25(6): 108 -111 .
[10] HE Xinlai; CHU Youyi; KE Jun (T. Ko) (Beijing University of Iron and Steel Technology). THE HARDENABILITY OF BORON STEEL AND THE SEGREGATION OF BORON[J]. Acta Metall Sin, 1983, 19(6): 5 -114 .