Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (2): 221-226    DOI: 10.3724/SP.J.1037.2009.00180
论文 Current Issue | Archive | Adv Search |
EFFECTS OF WATER QUENCHING PROCESS ON THE MICROSTRUCTURE AND MECHANICAL PROPERTIES OF TWIP STEEL
LI Jiguang1; DING Yajie1; PENG Xingdong1; LIU Jinwei2
1.School of Materials Science and Engineering; University of Science and Technology Liaoning; Anshan 114051
2.Department of Engineering; Anshan Iron and Steel Company; Anshan 114021
Cite this article: 

LI Jiguang DING Yajie PENG Xingdong LIU Jinwei. EFFECTS OF WATER QUENCHING PROCESS ON THE MICROSTRUCTURE AND MECHANICAL PROPERTIES OF TWIP STEEL. Acta Metall Sin, 2010, 46(2): 221-226.

Download:  PDF(2725KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In order to reduce greenhouse gas emissions, improve fuel economy and enhance safety of automobiles, a new high–strength and high–plasticity twinning induced plasticity (TWIP) steel containing medium carbon and high manganese has been developed. The effects of water quenching
process on the microstructures of such TWIP steels and deformed ones were observed by OM, SEM and TEM, and effects on the mechanical properties were investigated by unidirectional tensile. The experimental results show that the volume fraction of annealing twins and the average size of grains, the plasticity and the strain hardening capability of TWIP steel increase with the increase of water quenching temperature, but the strength and the yield ratio decrease with it. Therefore, the samples could be obtained with a better comprehensive property, that is, the tensile strenth is 960 MPa, the elongation percentage is 60.5% and the strength–plasticity product achieves the maximum value of 6.096 ×104 MPa·%. It is also found that the austenite with a loof annealing twins can be transformed into deformation twins with the increase of the deformation degree, so that the strength and plasticity of TWIP steel are improved.

Key words:   TWIP steel      water quenching      deformed twin      microstructure      mechanical property     
Received:  20 March 2009     
Fund: 

Supported by Office of Education of Liaoning Province (No.20060430)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2009.00180     OR     https://www.ams.org.cn/EN/Y2010/V46/I2/221

[1] Willian P. Adv Mater Process, 2000; 158(5): 38
[2] Frommeyer G, Br¨ux U, Neumann P. ISIJ Int, 2003; 43: 438
[3] Vercammen S, Blanpain B, Cooman B C C. J Acta Mater, 2004; 52: 2005
[4] Wang S H, Liu Z Y, Wang G D. J Northeast Univ (Nat Sci), 2008; 29: 1283
(王书晗, 刘振宇, 王国栋. 东北大学学报(自然科学版), 2008; 29: 1283)
[5] Mi Z L, Tang D, Dai Y J, Wang H Q, Li S S. Acta Metall Sin (Engl Lett), 2007; 20: 441
[6] Grassel O, Kruger L, Frommeyer G, Meyer L W. Int J Plast, 2005; 16: 1404
[7] Vercammen S, Blanpain B, Cooman B C,Wollants P. Acta Mater, 2004; 52: 2007
[8] Bouaziz O, Allain S, Scott C. Scr Mater, 2008; 58: 484
[9] Hamada A S, Somani M C, Karjalainen L P. ISIJ Int, 2007; 47: 907
[10] Yang J X. Physical Basis of Metal Plastic Deformation. Beijing: Metallurgical Industry Press, 1988: 185
(杨觉先. 金属塑性变形物理基础. 北京: 冶金工业出版社, 1988: 185)
[11] Fullman R L, Fisher J C. J Appl Phys, 1951; 22: 1350
[12] Form W, Gindraux G, Mlyncar V. Met Sci, 1980; 14: 16
[13] Mackanzie J K. Acta Metall, 1964; 12: 223
[14] Yu Y N. Principles of Metallography. Beijing: Metallurgical Industry Press, 2000: 65
(余永宁. 金属学原理. 北京: 冶金工业出版社, 2000: 65)
[15] Zhu R F, Zhao Z Q, L¨u Y P, Li S T, Wang S Q. J Shangdong Univ Technol, 1997; 27(1): 50
(朱瑞富, 朝志强, 吕宇鹏, 李士同, 王世清. 山东工业大学学报, 1997; 27(1): 50)
[16] Wei X C, Li L, Fu R Y, Shi W. J Iron Steel Rec Int, 2003; 10: 49
[17] Byun T S, Farrell K, Lee E H, Hunn J D, Mansur L K. J Nucl Mater, 2001; 298: 269
[18] Wang Z C, Kim S T, Lee C Q, Lee T H. J Mater Prot Technol, 2004; 151: 141

[1] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[6] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[7] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[10] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[11] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[12] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[13] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[14] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[15] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
No Suggested Reading articles found!