Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (2): 147-154    DOI: 10.3724/SP.J.1037.2009.00533
论文 Current Issue | Archive | Adv Search |
ANALYSIS OF THE STATIC RECRYSTALLIZATION AT TENSION TWINS IN AZ31 MAGNESIUM ALLOY
LI Xiao; YANG Ping; MENG Li; CUI Feng’e
School of Materials Science and Engineering; University of Science and Technology Beijing; Beijing 100083
Cite this article: 

LI Xiao YANG Ping MENG Li CUI Feng’e. ANALYSIS OF THE STATIC RECRYSTALLIZATION AT TENSION TWINS IN AZ31 MAGNESIUM ALLOY. Acta Metall Sin, 2010, 46(2): 147-154.

Download:  PDF(5367KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Due to the poor plasticity of magnesium alloys at room temperature (about 15%), twinning plays an important role in the deformation of magnesium alloys, and twins will be the dominant recrystallization nucleation sites. There are at least two types of twinning in magnesium: the {1012}–type tension twinning and the {1011}–type compression twinning. Tension twinning proceeds much more easily than compression twinning since its volume fraction is much higher than that of compression twins, which may have a promotion effect on the recrystallization to a certain degree. Based on the previous research on the static recrystallization at compression twins, the evolution of microstructure and texture in AZ31 magnesium alloy during its static recystallization at tension twins was futher investigated; and the orientational characteristics of new grains formed at tension twins in the early stage of static recrystallization were analyzed by EBSD technique. The results showed that tension twins played only a subordinate role in recrystallization nucleation and suppressed recrystallization rate, thus failed to rfine grain size effectively. The strong basal texture waretained and weakened wih no new texture component being detectd dring annealing. New grains were observed to nucleae preferentially at the intersections of tension twin variants or the intersections between tension twins and compression twins. Their orientations were relative random and are strongly scattered from those of original tension twins or compression twins. A comparison of the recrystallization at tension twins and compression twins was made.

Key words:  magnesium alloy      tension twin      texture      recystallization      orienaion     
Received:  10 August 2009     
Fund: 

Supported by National Natural Science Foundation of China (No.50571009)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2009.00533     OR     https://www.ams.org.cn/EN/Y2010/V46/I2/147

[1] Gehrmann R, Frommert M M, Gottstein G. Mater Sci Eng, 2005; A395: 338
[2] Agnew S R, Duygulu O. Int J Plast, 2005; 21: 1161
[3] Tucker M T, Horstemeyer M F, Gullett P M, Kadiri H E, Whittington W R. Scr Mater, 2009; 60: 182
[4] Kelley E W, Hosford Jr. W F. Trans AIME, 1968; 242: 5
[5] Wonsiewicz B C, Backofen W A. Trans AIME, 1967; 239: 1422
[6] Hartt WH, Reed–Hill R E. Trans Metall Soc AIME, 1968; 242: 1127
[7] Al–Samman T, Gottstein G. Mater Sci Eng, 2008; A490: 411
[8] P´erez–Prado M T, del Valle J A, Contreras J M, Ruano O A. Scr Mater, 2004; 50: 661
[9] Yin D L, Zhang K F, Wang G F, Han W B. Mater Sci Eng, 2005; A392: 320
[10] Prasad Y V R K, Rao K P. Mater Sci Eng, 2006; A432: 170
[11] del Valle J A, Ruano O A. Mater Sci Eng, 2008; A487: 473
[12] Nave M D, Barnett M R. Scr Mater, 2004; 51: 881
[13] Cottam R, Robson J, Lorimer G, Davis B. Ceram Trans, 2008; 200: 501
[14] Jager A, Luk´ac P, Gartnerov´a V, Haloda J, Dopita M. Mater Sci Eng, 2006; A432: 20
[15] Mackenzie L W F, Pekguleryuz M O. Scr Mater, 2008; 59: 665
[16] Yi S B, Zaefferer S, Brokmeier H G. Mater Sci Eng, 2006; A424: 275
[17] Yang X Y, Miura H, Sakai T. Trans Nonferrous Met Soc China, 2007; 17: 1139
[18] Beer A G, Barnett M R. Mater Sci Eng, 2008; A485: 318
[19] Cottam R, Robson J, Lorimer G, Davis B. Mater Sci Eng, 2008; A485: 375
[20] Li X, Yang P, Wang L N, Meng L, Cui F E. Mater Sci Eng, 2009; A517: 160

[1] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[2] SHAO Xiaohong, PENG Zhenzhen, JIN Qianqian, MA Xiuliang. Unravelling the {101¯2} Twin Intersection Between LPSO Structure/SFs in Magnesium Alloy[J]. 金属学报, 2023, 59(4): 556-566.
[3] ZHU Yunpeng, QIN Jiayu, WANG Jinhui, MA Hongbin, JIN Peipeng, LI Peijie. Microstructure and Properties of AZ61 Ultra-Fine Grained Magnesium Alloy Prepared by Mechanical Milling and Powder Metallurgy Processing[J]. 金属学报, 2023, 59(2): 257-266.
[4] TANG Weineng, MO Ning, HOU Juan. Research Progress of Additively Manufactured Magnesium Alloys: A Review[J]. 金属学报, 2023, 59(2): 205-225.
[5] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[6] CHEN Yang, MAO Pingli, LIU Zheng, WANG Zhi, CAO Gengsheng. Detwinning Behaviors and Dynamic Mechanical Properties of Precompressed AZ31 Magnesium Alloy Subjected to High Strain Rates Impact[J]. 金属学报, 2022, 58(5): 660-672.
[7] ZENG Xiaoqin, WANG Jie, YING Tao, DING Wenjiang. Recent Progress on Thermal Conductivity of Magnesium and Its Alloys[J]. 金属学报, 2022, 58(4): 400-411.
[8] JIANG Weining, WU Xiaolong, YANG Ping, GU Xinfu, XIE Qingge. Formation of Dynamic Recrystallization Zone and Characteristics of Shear Texture in Surface Layer of Hot-Rolled Silicon Steel[J]. 金属学报, 2022, 58(12): 1545-1556.
[9] YANG Ping, WANG Jinhua, MA Dandan, PANG Shufang, CUI Feng'e. Influences of Composition on the Transformation-Controlled {100} Textures in High Silicon Electrical Steels Prepared by Mn-Removal Vacuum Annealing[J]. 金属学报, 2022, 58(10): 1261-1270.
[10] LI Shaojie, JIN Jianfeng, SONG Yuhao, WANG Mingtao, TANG Shuai, ZONG Yaping, QIN Gaowu. Multimodal Microstructure of Mg-Gd-Y Alloy Through an Integrated Simulation of Process-Structure-Property[J]. 金属学报, 2022, 58(1): 114-128.
[11] DING Ning, WANG Yunfeng, LIU Ke, ZHU Xunming, LI Shubo, DU Wenbo. Microstructure, Texture, and Mechanical Properties of Mg-8Gd-1Er-0.5Zr Alloy by Multi-Directional Forging at High Strain Rate[J]. 金属学报, 2021, 57(8): 1000-1008.
[12] YAN Mengqi, CHEN Liquan, YANG Ping, HUANG Lijun, TONG Jianbo, LI Huanfeng, GUO Pengda. Effect of Hot Deformation Parameters on the Evolution of Microstructure and Texture of β Phase in TC18 Titanium Alloy[J]. 金属学报, 2021, 57(7): 880-890.
[13] WANG Huiyuan, XIA Nan, BU Ruyu, WANG Cheng, ZHA Min, YANG Zhizheng. Current Research and Future Prospect on Low-Alloyed High-Performance Wrought Magnesium Alloys[J]. 金属学报, 2021, 57(11): 1429-1437.
[14] ZUO Liang, LI Zongbin, YAN Haile, YANG Bo, ZHAO Xiang. Texturation and Functional Behaviors of Polycrystalline Ni-Mn-X Phase Transformation Alloys[J]. 金属学报, 2021, 57(11): 1396-1415.
[15] PAN Fusheng, JIANG Bin. Development and Application of Plastic Processing Technologies of Magnesium Alloys[J]. 金属学报, 2021, 57(11): 1362-1379.
No Suggested Reading articles found!