Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (2): 147-154    DOI: 10.3724/SP.J.1037.2009.00533
论文 Current Issue | Archive | Adv Search |
LI Xiao; YANG Ping; MENG Li; CUI Feng’e
School of Materials Science and Engineering; University of Science and Technology Beijing; Beijing 100083
Download:  PDF(5367KB) 
Export:  BibTeX | EndNote (RIS)      

Due to the poor plasticity of magnesium alloys at room temperature (about 15%), twinning plays an important role in the deformation of magnesium alloys, and twins will be the dominant recrystallization nucleation sites. There are at least two types of twinning in magnesium: the {1012}–type tension twinning and the {1011}–type compression twinning. Tension twinning proceeds much more easily than compression twinning since its volume fraction is much higher than that of compression twins, which may have a promotion effect on the recrystallization to a certain degree. Based on the previous research on the static recrystallization at compression twins, the evolution of microstructure and texture in AZ31 magnesium alloy during its static recystallization at tension twins was futher investigated; and the orientational characteristics of new grains formed at tension twins in the early stage of static recrystallization were analyzed by EBSD technique. The results showed that tension twins played only a subordinate role in recrystallization nucleation and suppressed recrystallization rate, thus failed to rfine grain size effectively. The strong basal texture waretained and weakened wih no new texture component being detectd dring annealing. New grains were observed to nucleae preferentially at the intersections of tension twin variants or the intersections between tension twins and compression twins. Their orientations were relative random and are strongly scattered from those of original tension twins or compression twins. A comparison of the recrystallization at tension twins and compression twins was made.

Key words:  magnesium alloy      tension twin      texture      recystallization      orienaion     
Received:  10 August 2009     

Supported by National Natural Science Foundation of China (No.50571009)

Corresponding Authors:  YANG Ping     E-mail:

Cite this article: 


URL:     OR

[1] Gehrmann R, Frommert M M, Gottstein G. Mater Sci Eng, 2005; A395: 338
[2] Agnew S R, Duygulu O. Int J Plast, 2005; 21: 1161
[3] Tucker M T, Horstemeyer M F, Gullett P M, Kadiri H E, Whittington W R. Scr Mater, 2009; 60: 182
[4] Kelley E W, Hosford Jr. W F. Trans AIME, 1968; 242: 5
[5] Wonsiewicz B C, Backofen W A. Trans AIME, 1967; 239: 1422
[6] Hartt WH, Reed–Hill R E. Trans Metall Soc AIME, 1968; 242: 1127
[7] Al–Samman T, Gottstein G. Mater Sci Eng, 2008; A490: 411
[8] P´erez–Prado M T, del Valle J A, Contreras J M, Ruano O A. Scr Mater, 2004; 50: 661
[9] Yin D L, Zhang K F, Wang G F, Han W B. Mater Sci Eng, 2005; A392: 320
[10] Prasad Y V R K, Rao K P. Mater Sci Eng, 2006; A432: 170
[11] del Valle J A, Ruano O A. Mater Sci Eng, 2008; A487: 473
[12] Nave M D, Barnett M R. Scr Mater, 2004; 51: 881
[13] Cottam R, Robson J, Lorimer G, Davis B. Ceram Trans, 2008; 200: 501
[14] Jager A, Luk´ac P, Gartnerov´a V, Haloda J, Dopita M. Mater Sci Eng, 2006; A432: 20
[15] Mackenzie L W F, Pekguleryuz M O. Scr Mater, 2008; 59: 665
[16] Yi S B, Zaefferer S, Brokmeier H G. Mater Sci Eng, 2006; A424: 275
[17] Yang X Y, Miura H, Sakai T. Trans Nonferrous Met Soc China, 2007; 17: 1139
[18] Beer A G, Barnett M R. Mater Sci Eng, 2008; A485: 318
[19] Cottam R, Robson J, Lorimer G, Davis B. Mater Sci Eng, 2008; A485: 375
[20] Li X, Yang P, Wang L N, Meng L, Cui F E. Mater Sci Eng, 2009; A517: 160

[1] ZHANG Yang, SHAO Jianbo, CHEN Tao, LIU Chuming, CHEN Zhiyong. Deformation Mechanism and Dynamic Recrystallization of Mg-5.6Gd-0.8Zn Alloy During Multi-Directional Forging[J]. 金属学报, 2020, 56(5): 723-735.
[2] YU Lei,LUO Haiwen. Effect of Partial Recrystallization Annealing on Magnetic Properties and Mechanical Properties of Non-Oriented Silicon Steel[J]. 金属学报, 2020, 56(3): 291-300.
[3] CHENG Chao,CHEN Zhiyong,QIN Xushan,LIU Jianrong,WANG Qingjiang. Microstructure, Texture and Mechanical Property ofTA32 Titanium Alloy Thick Plate[J]. 金属学报, 2020, 56(2): 193-202.
[4] Xin LI,Yuecheng DONG,Zhenhua DAN,Hui CHANG,Zhigang FANG,Yanhua GUO. Corrosion Behavior of Ultrafine Grained Pure Ti Processed by Equal Channel Angular Pressing[J]. 金属学报, 2019, 55(8): 967-975.
[5] Liping DENG,Kaixuan CUI,Bingshu WANG,Hongliang XIANG,Qiang LI. Microstructure and Texture Evolution of AZ31 Mg Alloy Processed by Multi-Pass Compressing Under Room Temperature[J]. 金属学报, 2019, 55(8): 976-986.
[6] Zheng LIU,Jianrong LIU,Zibo ZHAO,Lei WANG,Qingjiang WANG,Rui YANG. Microstructure and Tensile Property of TC4 Alloy Produced via Electron Beam Rapid Manufacturing[J]. 金属学报, 2019, 55(6): 692-700.
[7] Houlong LIU,Mingyu MA,Lingling LIU,Liangliang WEI,Liqing CHEN. Effect of Hot Band Annealing Processes on Texture and Formability of 19Cr2Mo1W Ferritic Stainless Steel[J]. 金属学报, 2019, 55(5): 566-574.
[8] Dechun REN, Huhu SU, Huibo ZHANG, Jian WANG, Wei JIN, Rui YANG. Effect of Cold Rotary-Swaging Deformation on Microstructure and Tensile Properties of TB9 Titanium Alloy[J]. 金属学报, 2019, 55(4): 480-488.
[9] Yubi GAO, Yutian DING, Jianjun CHEN, Jiayu XU, Yuanjun MA, Dong ZHANG. Evolution of Microstructure and Texture During Cold Deformation of Hot-Extruded GH3625 Alloy[J]. 金属学报, 2019, 55(4): 547-554.
[10] Chen GU, Ping YANG, Weimin MAO. The Influence of Rolling Process on the Microstructure, Texture and Magnetic Properties of Low Grades Non-Oriented Electrical Steel After Phase Transformation Annealing[J]. 金属学报, 2019, 55(2): 181-190.
[11] Rongchang ZENG, Lanyue CUI, Wei KE. Biomedical Magnesium Alloys: Composition, Microstructure and Corrosion[J]. 金属学报, 2018, 54(9): 1215-1235.
[12] Yanyu LIU, Pingli MAO, Zheng LIU, Feng WANG, Zhi WANG. Theoretical Calculation of Schmid Factor and Its Application Under High Strain Rate Deformation in Magnesium Alloys[J]. 金属学报, 2018, 54(6): 950-958.
[13] Guohua WU, Yushi CHEN, Wenjiang DING. Current Research and Future Prospect on Microstructures Controlling of High Performance Magnesium Alloys During Solidification[J]. 金属学报, 2018, 54(5): 637-646.
[14] Xudong LI, Pingli MAO, Yanyu LIU, Zheng LIU, Zhi WANG, Feng WANG. Anisotropy and Deformation Mechanisms ofAs-Extruded Mg-3Zn-1Y Magnesium AlloyUnder High Strain Rates[J]. 金属学报, 2018, 54(4): 557-565.
[15] Shoumei XIONG, Jinglian DU, Zhipeng GUO, Manhong YANG, Mengwu WU, Cheng BI, Yongyou CAO. Characterization and Modeling Study on Interfacial Heat Transfer Behavior and Solidified Microstructure of Die Cast Magnesium Alloys[J]. 金属学报, 2018, 54(2): 174-192.
No Suggested Reading articles found!