Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (1): 52-56    DOI:
论文 Current Issue | Archive | Adv Search |
HOT DEFORMATION BEHAVIOR OF 2205 DUPLEX STAINLESS STEEL
CHEN Lei; WANG Longmei; DU Xiaojian; LIU Xiao
Department of Metallurgical Technology; Central Iron and Steel Research Institute; Beijing 100081
Cite this article: 

CHEN Lei WANG Longmei DU Xiaojian LIU Xiao. HOT DEFORMATION BEHAVIOR OF 2205 DUPLEX STAINLESS STEEL. Acta Metall Sin, 2010, 46(1): 52-56.

Download:  PDF(941KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

During hot deformation of the duplex stainless steels consisting of $\delta$--ferrite and $\gamma$--austenite, their microstructure evolution and mechanical response are more complicated as compared with those of single--phase ferritic or austenitic stainless steels, especially for study of the mechanical behavior. In the present research, the hot deformation behavior of a 2205 duplex stainless steel has been investigated through uniaxial compression test using Gleeble--3800 thermal--mechanical simulator within the temperature range of 1223---1523 K and the strain rate range of 0.01---10 s$^{-1}$, the corresponding flow curves and their characters and microstructures have been determined and analyzed. Elongated austenite distributes in ferrite matrix, and the volume fraction of ferrite increases with rising temperature. Dynamic recrystallization of austenite is enhanced by increasing temperature and decreasing strain rate. Based on the constitutive equation for hot deformation, the apparent activation energy (Q) and the apparent stress exponent (n) of the steel are obtained to be about 451 kJ/mol and 4.026, respectively. There is a particular shape of flow curves, i.e. a yield point elongation-like effect, which is characterized by a non-strengthening plateau during the initial stages of plastic deformation. This yield point elongation-like effect increases with decreasing Zener-Hollomon parameter, Z. When used a simplified stress function, a deviation of linear relationship between ln Z and peak stress (σp) occurred at the critical value (ln Zc=38.18). Relationships between peak stress and temperature and strain rate can be more simply described as σp=20.6ln ε+1118002/T-266.8(ln Z>38.18), and σp=9.1ln ε+493874/T-701.9(ln Z≦38.18).

Key words:  duplex stainless steel      hot deformation      dynamic recrystallization      Z parameter      peak stress     
Received:  14 May 2009     
ZTFLH: 

TG133

 

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2010/V46/I1/52

[1] Nilsson J O. Mater Sci Technol, 1992; 8: 685
[2] Chen T H, Weng K L, Yang J R. Mater Sci Eng, 2002; A338: 259
[3] Tseng C M, Liou H Y, Tsai W T. Mater Sci Eng, 2003; A344: 190
[4] Yu Z C, Cheng S M, Ding D H. Spec Steel Technol, 2005; (4): 42
(余志川, 程士明, 丁大虎. 特钢技术, 2005; (4): 42)

[5] Shu X J, Zhang S Q, Song Z G. Steel Pipe, 2004; 33(6): 15
(舒先进, 张淑琴, 宋志刚. 钢管, 2004; 33(6): 15)

[6] Iza–Mendia A, Pi˜nol–Juez A, Urcola J J, Guti´errez I. Metall Mater Trans, 1998; 29A: 2975
[7] Pi˜nol–Juez A, Iza–Mendia A, Guti´errez I. Metall Mater Trans, 2000; 31A: 1671
[8] Balacin O, HoffmannWA, Jonas J J. Metall Mater Trans, 2000; 31A: 1353
[9] Evangelista E, McQueen H J, Niewczas M, Cabibbo M. Can Metall Q, 2004; 43: 339
[10] Cabrera J M, Mateo A, Llanes L, Prado J M, Anglada M. J Mater Process Technol, 2003; 143–144: 321
[11] Reis G S, Jorge A M, Balancin O. Mater Res, 2000; 3: 31
[12] Cizek P, Wynne B P. Mater Sci Eng, 1997; A230: 88
[13] Dehghan–Manshadi A, Barnett M R, Hodgson P D. Mater Sci Technol, 2007; 23: 1478
[14] Dehghan–Manshadi A, Hodgson P D. J Mater Sci, 2008; 43: 6272
[15] Duprez L, de Cooman B C, Akdut N. Metall Mater Trans, 2002; 33A: 1931
[16] Jinmenze J A, Carreno F, Ruano O A. Mater Sci Technol, 1999; 15: 127
[17] Hernandez L E, Beynon J H, Christophe P, Sybrand Z. Steel Res Int, 2005; 76: 137
[18] Imbert C, Ryan N D, McQueen H J. Metall Mater Trans, 1984; 15A: 1855
[19] Milovic C, Manojlovic D. Andjelic M, Drobnjak D. Steel Res, 1992; 63: 78
[20] Wang B Z, Fu W T, Lv Z Q, Jiang P, Zhang W H, Tian Y J. Mater Sci Eng, 2008; A487: 108

[1] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[2] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[3] WU Caihong, FENG Di, ZANG Qianhao, FAN Shichun, ZHANG Hao, LEE Yunsoo. Microstructure Evolution and Recrystallization Behavior During Hot Deformation of Spray Formed AlSiCuMg Alloy[J]. 金属学报, 2022, 58(7): 932-942.
[4] SUN Yi, ZHENG Qinyuan, HU Baojia, WANG Ping, ZHENG Chengwu, LI Dianzhong. Mechanism of Dynamic Strain-Induced Ferrite Transformation in a 3Mn-0.2C Medium Mn Steel[J]. 金属学报, 2022, 58(5): 649-659.
[5] REN Shaofei, ZHANG Jianyang, ZHANG Xinfang, SUN Mingyue, XU Bin, CUI Chuanyong. Evolution of Interfacial Microstructure of Ni-Co Base Superalloy During Plastic Deformation Bonding and Its Bonding Mechanism[J]. 金属学报, 2022, 58(2): 129-140.
[6] JIANG Weining, WU Xiaolong, YANG Ping, GU Xinfu, XIE Qingge. Formation of Dynamic Recrystallization Zone and Characteristics of Shear Texture in Surface Layer of Hot-Rolled Silicon Steel[J]. 金属学报, 2022, 58(12): 1545-1556.
[7] YAN Mengqi, CHEN Liquan, YANG Ping, HUANG Lijun, TONG Jianbo, LI Huanfeng, GUO Pengda. Effect of Hot Deformation Parameters on the Evolution of Microstructure and Texture of β Phase in TC18 Titanium Alloy[J]. 金属学报, 2021, 57(7): 880-890.
[8] CHEN Guo, WANG Xinbo, ZHANG Renxiao, MA Chengyue, YANG Haifeng, ZHOU Li, ZHAO Yunqiang. Effect of Tool Rotation Speed on Microstructure and Properties of Friction Stir Processed 2507 Duplex Stainless Steel[J]. 金属学报, 2021, 57(6): 725-735.
[9] NI Ke, YANG Yinhui, CAO Jianchun, WANG Liuhang, LIU Zehui, QIAN Hao. Softening Behavior of 18.7Cr-1.0Ni-5.8Mn-0.2N Low Nickel-Type Duplex Stainless Steel During Hot Compression Deformation Under Large Strain[J]. 金属学报, 2021, 57(2): 224-236.
[10] LIU Chao, YAO Zhihao, JIANG He, DONG Jianxin. The Feasibility and Process Control of Uniform Equiaxed Grains by Hot Deformation in GH4720Li Alloy with Millimeter-Level Coarse Grains[J]. 金属学报, 2021, 57(10): 1309-1319.
[11] ZHOU Li, LI Ming, WANG Quanzhao, CUI Chao, XIAO Bolv, MA Zongyi. Study of the Hot Deformation and Processing Map of 31%B4Cp/6061Al Composites[J]. 金属学报, 2020, 56(8): 1155-1164.
[12] DENG Yahui, YANG Yinhui, PU Chaobo, NI Ke, PAN Xiaoyu. Effect of Mn Addition on High Temperature Tensile Behavior of 23%Cr Low Nickel Type Duplex Stainless Steel[J]. 金属学报, 2020, 56(7): 949-959.
[13] CHEN Wenxiong, HU Baojia, JIA Chunni, ZHENG Chengwu, LI Dianzhong. Post-Dynamic Softening of Austenite in a Ni-30%Fe Model Alloy After Hot Deformation[J]. 金属学报, 2020, 56(6): 874-884.
[14] ZHANG Yang, SHAO Jianbo, CHEN Tao, LIU Chuming, CHEN Zhiyong. Deformation Mechanism and Dynamic Recrystallization of Mg-5.6Gd-0.8Zn Alloy During Multi-Directional Forging[J]. 金属学报, 2020, 56(5): 723-735.
[15] WANG Guiqin,WANG Qin,CHE Honglong,LI Yajun,LEI Mingkai. Effects of Silicon on the Microstructure and Propertiesof Cast Duplex Stainless Steel with Ultra-HighChromium and High Carbon[J]. 金属学报, 2020, 56(3): 278-290.
No Suggested Reading articles found!