Please wait a minute...
Acta Metall Sin  2020, Vol. 56 Issue (7): 949-959    DOI: 10.11900/0412.1961.2019.00376
Current Issue | Archive | Adv Search |
Effect of Mn Addition on High Temperature Tensile Behavior of 23%Cr Low Nickel Type Duplex Stainless Steel
DENG Yahui, YANG Yinhui(), PU Chaobo, NI Ke, PAN Xiaoyu
School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
Cite this article: 

DENG Yahui, YANG Yinhui, PU Chaobo, NI Ke, PAN Xiaoyu. Effect of Mn Addition on High Temperature Tensile Behavior of 23%Cr Low Nickel Type Duplex Stainless Steel. Acta Metall Sin, 2020, 56(7): 949-959.

Download:  HTML  PDF(6645KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

There are different crystal structures and stacking fault energies (SFEs) for two phases of duplex stainless steel (DSS), and the Mn substitution for Ni also can change SFE of two phases and cause austenite stability variation during high temperature deformation. Thus, the thermal deformation behavior of DSS with Mn addition become more complex compared with that of single phase steel during high temperature tensile process. In this work, the high temperature tensile behavior of 23%Cr low nickel type DSS with different Mn contents (6.26%~14.13%, mass fraction) has been studied in the temperature of 300~1050 ℃ at strain rate of 0.01 s-1 by using a thermal simulation machine. The results showed that the austenite phases mainly accommodate tensile deformation stress, and the volume fraction of them increased with increasing Mn contents, which is beneficial to enhance the thermoplasticity, and has little effect on the tensile strength. With more Mn addition, the reduction of area increases when deformed in the temperature of 550~1050 ℃, but decreases at lower temperature of 300 ℃. The value of crack sensitive point increased slightly when stretched at lower temperature (450 ℃, 750 ℃) with more Mn addition, and optimum plastic temperature zones are in the range of 500~650 ℃ and 850~1050 ℃. The effect of Mn addition on work hardening rate is slight when deformed at 300 ℃, while high Mn addition is favorable for dynamic recrystallization occurence at lower strain when deformed at higher temperature of 1050 ℃. The tensile deformation microstructure of different Mn addition samples are mainly dependent on the austenite dislocations evolution. As the Mn content attained 14.13%, a large number of dislocation cells with high density and small size formed in austenite phase, which is contributed to grains refinement and improves thermoplasticity.

Key words:  duplex stainless steel      low nickel type      Mn addition      thermoplasticity     
Received:  08 November 2019     
ZTFLH:  TG142  
Fund: National Natural Science Foundation of China(51461024);National Natural Science Foundation of China(51861019)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2019.00376     OR     https://www.ams.org.cn/EN/Y2020/V56/I7/949

No.CSiMnSPCrNiMoCuNFe
10.040.226.260.0040.00823.32.151.410.140.26Bal.
20.040.2310.270.0040.00623.32.121.350.140.28Bal.
30.040.2514.130.0030.00623.62.201.290.140.28Bal.
Table 1  Chemical compositions of duplex stainless steels
Fig.1  True stress-true strain curves of different Mn addition duplex stainless steel samples tensiled at strain rate 0.01 s-1 under di?erent temperatures(a) 6.26%Mn(b) 10.27%Mn(c) 14.13%Mn
Fig.2  OM images showing the deformation microstructures of near fracture morphologies normal to the tensile direction for the duplex stainless steel samples solution treated (a, c, e) and tensioned at 550 ℃ (b, d, f) (a, b) 6.26%Mn (c, d) 10.27%Mn (e, f) 14.13%Mn
Fig.3  Volume fraction variations of austenite phase for the duplex stainless steel samples solution treated and tensioned at 550 ℃ with different Mn additions
Fig.4  Strain hardening rate-strain curves of different Mn addition duplex stainless steel samples under tensile temperatures of 300 ℃ (a), 550 ℃ (b), 800 ℃ (c) and 1050 ℃ (d) (εp—peak strain)
Fig.5  Tensile strength (a) and reduction of area (b) at different tensile temperatures for the duplex stainless steel samples with different Mn additions
Fig.6  Characteristic curves of high temperature tensile strength versus reduction of area for the duplex stainless steel samples
(a) 6.26%Mn
(b) 10.27%Mn
(c) 14.13%Mn
Fig.7  Tensile fracture SEM images of duplex stainless steel samples tensioned under 300 ℃ (a, c, e) and 550 ℃ (b, d, f)
(a, b) 6.26%Mn (c, d) 10.27%Mn (e, f) 14.27%Mn
Fig.8  SEM fractographs (a, c, e) and corresponding EDS of inclusions (b, d, f) taken at the edge parts of tensile duplex stainless steel samples at 550 ℃
(a, b) 6.26%Mn (c, d) 10.27%Mn (e, f) 14.27%Mn
Fig.9  Bright field TEM images at the near parts of tensile fractured duplex stainless steel samples with different Mn addition at 550 ℃
(a) 6.26%Mn, sub-grain structure(b) 6.26%Mn, cellular structure in austenite phase(c) 6.26%Mn, two phases(d) 10.27%Mn, two phases(e) 10.27%Mn, tangled dislocations in austenite phase(f) 10.27%Mn, cellular structure in austenite phase(g) 14.13%Mn, two phases(h, i) 14.13%Mn, cellular structure in austenite phase
[1] Liljas M, Johansson P, Liu H P, et al. Development of a lean duplex stainless steel [J]. Steel Res. Int., 2008, 79: 466
[2] Miranda M A R, Sasaki J M, Tavares S S M, et al. The use of X-ray diffraction, microscopy, and magnetic measurements for analysing microstructural features of a duplex stainless steel [J]. Mater. Charact., 2005, 54: 387
[3] Charles J, Chemelle P, translated by Hu J C, Zhang W. The history of duplex developments, nowadays DSS properties and duplex market future trends [J]. World Iron Steel, 2012, 12(1): 46
Charles J, Chemelle P著, 胡锦程, 张 伟译. 双相不锈钢的发展现状及未来市场趋势 [J]. 世界钢铁, 2012, 12(1): 46)
[4] Sato Y S, Nelson T W, Sterling C J, et al. Microstructure and mechanical properties of friction stir welded SAF 2507 super duplex stainless steel [J]. Mater. Sci. Eng., 2005, A397: 376
[5] Su Y S, Yang Y H, Cao J C, et al. Research on hot working behavior of low-nickel duplex stainless steel 2101 [J]. Acta Metall. Sin., 2018, 54: 485
(苏煜森, 杨银辉, 曹建春等. 节Ni型2101双相不锈钢的高温热加工行为研究 [J]. 金属学报, 2018, 54: 485)
[6] Mcirdi L, Baptiste D, Inal K, et al. Multi-scale behaviour modelling of an austeno-ferritic steel [J]. J. Neut. Res., 2001, 9: 217
[7] Moverare J J, Odén M. Deformation behaviour of a prestrained duplex stainless steel [J]. Mater. Sci. Eng., 2002, A337: 25
[8] Siegmund T, Werner E, Fischer F D. On the thermomechanical deformation behavior of duplex-type materials [J]. J. Mech. Phys. Solids, 1995, 43: 495
[9] Iza-Mendia A, Piñol-Juez A, Urcola J J, et al. Microstructural and mechanical behavior of a duplex stainless steel under hot working conditions [J]. Metall. Mater. Trans., 1998, 29A: 2975
[10] Cabrera J M, Mateo A, Llanes L, et al. Hot deformation of duplex stainless steels [J]. J. Mater. Process. Technol., 2003, 143-144: 321
[11] Zhang P X, Ren X P, Xie J X, et al. Superplasticity mechanism of duplex stainless steels [J]. J. Univ. Sci. Technol. Beijing, 2005, 27: 68
(张沛学, 任学平, 谢建新等. 双相不锈钢超塑性变形机理 [J]. 北京科技大学学报, 2005, 27: 68)
[12] Shu X J, Zhang S Q, Song Z G. Experimental research on hot workability of 00Cr22Ni5Mo3N dual phase stainless steel [J]. Steel Pipe, 2004, 33(6): 15
(舒先进, 张淑琴, 宋志刚. 00Cr22Ni5Mo3N双相不锈钢热加工性能的试验研究 [J]. 钢管, 2004, 33(6): 15)
[13] Tong J, Fu W T, Lin G, et al. Hot deformation behavior of 00Cr25Ni7Mo4N super duplex stainless steel [J]. J. Iron Steel Res., 2007, 19(10): 40
(童 骏, 傅万堂, 林 刚等. 00Cr25Ni7Mo4N超级双相不锈钢的高温变形行为 [J]. 钢铁研究学报, 2007, 19(10): 40)
[14] Farahat A I Z, Hamed O, El-Sisi A, et al. Effect of hot forging and Mn content on austenitic stainless steel containing high carbon [J]. Mater. Sci. Eng., 2011, A530: 98
[15] Liu H B, Liu J H, Wu B W, et al. Effect of Mn and Al contents on hot ductility of high alloy Fe-xMn-C-yAl austenite TWIP steels [J]. Mater. Sci. Eng., 2017, A708: 360
[16] Balancin O, Hoffmann W A M, Jonas J J. Influence of microstructure on the flow behavior of duplex stainless steels at high temperatures [J]. Metall. Mater. Trans., 2000, 31A: 1353
[17] Chen L, Wang L M, Du X J. et al. Hot deformation behavior of 2205 duplex stainless steel [J]. Acta Metall. Sin., 2010, 46: 52
(陈 雷, 王龙妹, 杜晓建等. 2205双相不锈钢的高温变形行为 [J]. 金属学报, 2010, 46: 52)
[18] Liu C S. Measuring the phase content of dual-phases stainless steel accurately [J]. Phys. Test. Chem. Anal., 2003, 39A: 414
(刘持森. 双相不锈钢中相含量的精确测定 [J]. 理化检验, 2003, 39A: 414)
[19] Li J. Study on preparation, structure and properties of new resource-saving high Mn-N duplex stainless steels [D]. Shanghai: Shanghai University, 2011
(李 钧. 新型资源节约型高Mn-N双相不锈钢的制备、结构及性能研究 [D]. 上海: 上海大学, 2011)
[20] Park Y H, Lee Z H. The effect of nitrogen and heat treatment on the microstructure and tensile properties of 25Cr-7Ni-1.5Mo-3W-xN duplex stainless steel castings [J]. Mater. Sci. Eng., 2001, A297: 78
[21] Song Y Q, Guan Z P, Ma P K, et al. Theoretical and experimental standardization of strain hardening index in tensile deformation [J]. Acta Metall. Sin., 2006, 42: 673
(宋玉泉, 管志平, 马品奎等. 拉伸变形应变硬化指数的理论和实验规范 [J]. 金属学报, 2006, 42: 673)
[22] Mittra J, Dubey J S, Kulkarni U D, et al. Role of dislocation density in raising the stage II work-hardening rate of alloy 625 [J]. Mater. Sci. Eng., 2009, A512: 87
[23] Morris D G, Muñoz-Morris M A, Requejo L M. Work hardening in Fe-Al alloys [J]. Mater. Sci. Eng., 2007, A460-461: 163
[24] Barnett M R. Twinning and the ductility of magnesium alloys: Part I: “Tension” twins [J]. Mater. Sci. Eng., 2007, A464: 1
[25] Zhang Y J. Research on deformation induced plastic behavior of the lean duplex stainless steel [D]. Qinhuangdao: Yanshan University, 2017
(张英杰. 节约型双相不锈钢形变诱导塑性行为机理的研究 [D]. 秦皇岛: 燕山大学, 2017)
[26] Lu S, Hu Q M, Johansson B, et al. Stacking fault energies of Mn, Co and Nb alloyed austenitic stainless steels [J]. Acta Mater., 2011, 59: 5728
[27] Estrin Y, Mecking M. A unified phenomenological description of work hardening and creep based on one-parameter models [J]. Acta Metall., 1984, 32: 57
[28] Chen Z W, Dai Q X, Li D S, et al. Properties of Cr18Ni9Cu3NbN austenitic stainless steel [J]. Heat Treat. Met., 2010, 35(10): 52
(陈祖伟, 戴起勋, 李冬升等. Cr18Ni9Cu3NbN奥氏体不锈钢的性能研究 [J]. 金属热处理, 2010, 35(10): 52)
[29] Herrera C, Ponge D, Raabe D. Design of a novel Mn-based 1 GPa duplex stainless TRIP steel with 60% ductility by a reduction of austenite stability [J]. Acta Mater., 2011, 59: 4653
[30] Ren M, Li B H. The mechanism and preventing method of cracking on the steel ingot [J]. Heavy Cast. Forg., 1992, (3): 36
(任 猛, 李保华. 钢锭开裂的机理及防止方法 [J]. 大型铸锻件, 1992, (3): 36)
[31] Zhong Q P, Zhao Z H. Fractography [M]. Beijing: Higher Education Press, 2006: 200
(钟群鹏, 赵子华. 断口学 [M]. 北京: 高等教育出版社, 2006: 200)
[32] Zhang Z Q, Li X Y, Lou Y C, et al. Advance in research of nitrogen contained stainless steels [J]. Foundry, 2002, 51: 661
(张仲秋, 李新亚, 娄延春等. 含氮不锈钢研究的进展 [J]. 铸造, 2002, 51: 661)
[33] Zhao X, Jing T F, Gao Y W, et al. Morphology of graphite in hot-compressed nodular iron [J]. J. Mater. Sci., 2004, 39: 6093
[34] Dai Q X, Wang A D, Cheng X N, et al. Effect of alloying elements and temperature on strength of cryogenic austenitic steels [J]. Mater. Sci. Eng., 2001, A311: 205
[35] Remy L, Pineau A. Twinning and strain-induced F.C.C. →H.C.P. transformation in the Fe-Mn-Cr-C system [J]. Mater. Sci. Eng., 1997, A28: 99
[36] Byun T S. On the stress dependence of partial dislocation separation and deformation microstructure in austenitic stainless steels [J]. Acta Mater., 2003, 51: 3063
[37] Michel D J, Moteff J, Lovell A J. Substructure of type 316 stainless steel deformed in slow tension at temperatures between 21 ℃ and 816 ℃ [J]. Acta Metall., 1973, 21: 1269
[38] Chen C, Wang M P, Wang S. et al. Evolution of dislocation microstructures in Ta-7.5%W alloy foils during cold-rolling [J]. Acta Metall. Sin., 2011, 47: 984
(陈 畅, 汪明朴, 王 珊等. Ta-7.5%W合金箔材冷轧过程中的位错结构演变 [J]. 金属学报, 2011, 47: 984)
[39] Yu Y N. Principles of Metallography [M]. Beijing: Metallurgical Industry Press, 2000: 48
(余永宁. 金属学原理 [M]. 北京: 冶金工业出版社, 2000: 408)
[40] Jiang T H, Liu M P, Xie X F, et al. Grain boundary structure of Al-Mg alloys processed by high pressure torsion [J]. Chin. J. Mater. Res., 2014, 28: 371
(蒋婷慧, 刘满平, 谢学锋等. 高压扭转大塑性变形Al-Mg合金中的晶界结构 [J]. 材料研究学报, 2014, 28: 371)
[41] Hu G D, Wang P, Li D Z, et al. The tensile behaviors of vanadium-containing 25Cr-20Ni austenitic stainless steel at temperature between 200 ℃ and 900 ℃ [J]. Mater. Sci. Eng., 2018: A711: 543
[42] Hu G X, Cai X, Rong Y H. Fundamentals of Materials Science [M]. 3rd Ed., Shanghai: Shanghai Jiaotong University Press, 2003: 201
(胡赓祥, 蔡 珣, 戎咏华. 材料科学基础 [M]. 第3版,上海: 上海交通大学出版, 2003: 201)
[43] Duprez L, De Cooman B C, Akdut N. Flow stress and ductility of duplex stainless steel during high-temperature torsion deformation [J]. Metall. Mater. Trans., 2002, 33A: 1931
[1] CHEN Guo, WANG Xinbo, ZHANG Renxiao, MA Chengyue, YANG Haifeng, ZHOU Li, ZHAO Yunqiang. Effect of Tool Rotation Speed on Microstructure and Properties of Friction Stir Processed 2507 Duplex Stainless Steel[J]. 金属学报, 2021, 57(6): 725-735.
[2] NI Ke, YANG Yinhui, CAO Jianchun, WANG Liuhang, LIU Zehui, QIAN Hao. Softening Behavior of 18.7Cr-1.0Ni-5.8Mn-0.2N Low Nickel-Type Duplex Stainless Steel During Hot Compression Deformation Under Large Strain[J]. 金属学报, 2021, 57(2): 224-236.
[3] WANG Guiqin,WANG Qin,CHE Honglong,LI Yajun,LEI Mingkai. Effects of Silicon on the Microstructure and Propertiesof Cast Duplex Stainless Steel with Ultra-HighChromium and High Carbon[J]. 金属学报, 2020, 56(3): 278-290.
[4] Yahui DENG,Yinhui YANG,Jianchun CAO,Hao QIAN. Research on Dynamic Recrystallization Behavior of 23Cr-2.2Ni-6.3Mn-0.26N Low Nickel TypeDuplex Stainless Steel[J]. 金属学报, 2019, 55(4): 445-456.
[5] Miao JIN, Wenquan LI, Shuo HAO, Ruixue MEI, Na LI, Lei CHEN. Effect of Solution Temperature on Tensile Deformation Behavior of Mn-N Bearing Duplex Stainless Steel[J]. 金属学报, 2019, 55(4): 436-444.
[6] CHEN Lei , HAO Shuo , MEI Ruixue , JIA Wei , LI Wenquan , GUO Baofeng . Intrinsic Increment of Plasticity Induced by TRIP and Its Dependence on the Annealing Temperature in a Lean Duplex Stainless Steel[J]. 金属学报, 2019, 55(11): 1359-1366.
[7] Yusen SU, Yinhui YANG, Jianchun CAO, Yuliang BAI. Research on Hot Working Behavior of Low-NickelDuplex Stainless Steel 2101[J]. 金属学报, 2018, 54(4): 485-493.
[8] Hai ZHANG,Shilei LI,Gang LIU,Yanli WANG. Effects of Hot Working on the Microstructure and Thermal Ageing Impact Fracture Behaviors of Z3CN20-09MDuplex Stainless Steel[J]. 金属学报, 2017, 53(5): 531-538.
[9] Yulai CHEN,Zhaoyin LUO,Jingyuan LI. EFFECT OF SOLUTION TEMPERATURE ON MICRO- STRUCTURE AND PITTING CORROSION RESISTANCE OF S32760 DUPLEX STAINLESS STEEL[J]. 金属学报, 2015, 51(9): 1085-1091.
[10] DAI Fuzhi, ZHANG Wenzheng. AN INVESTIGATION ON THE EQUILIBRIUM MOR- PHOLOGY AND INTERFACIAL STRUCTURES OF PRICIPITATES IN DUPLEX STAINLESS STEEL BY ATOMISTIC SIMULATION[J]. 金属学报, 2014, 50(9): 1123-1127.
[11] CHEN Yulai, ZHANG Tairan, WANG Yide, LI Jingyuan. EFFECTS OF O, N AND Ni CONTENTS ON HOT PLASTICITY OF 0Cr25Ni7Mo4N DUPLEX STAINLESS STEEL[J]. 金属学报, 2014, 50(8): 905-912.
[12] XIANG Hongliang, GUO Peipei, LIU Dong. MICROSTRUCTURE AND ANTIBACTERIAL PROPERTIES OF Ag-BEARING DUPLEX STAINLESS STEEL[J]. 金属学报, 2014, 50(10): 1210-1216.
[13] XIANG Hongliang FAN Jinchun LIU Dong GUO Peipei. EFFECTS OF ANTIBACTERIAL AGING TREATMENT ON MICROSTRUCTURE AND PROPERTIES OF COPPER-CONTAINING DUPLEX STAINLESS STEEL
I. Microstructure and Evolution of Copper-Rich Phase
[J]. 金属学报, 2012, 48(9): 1081-1088.
[14] XIANG Hongliang FAN Jinchun LIU Dong GU Xing. EFFECTS OF ANTIBACTERIAL AGING TREATMENT ON MICROSTRUCTURE AND PROPERTIES OF COPPER-CONTAINING DUPLEX STAINLESS STEEL
II. Corrosion Resistance and Antibacterial Properties
[J]. 金属学报, 2012, 48(9): 1089-1096.
[15] GUO Lifang LI Xuyan SUN Tao XU Juliang LI Jin JIANG Yiming . THE INFLUENCE OF SENSITIVE TEMPERATURE ON THE LOCALIZED CORROSION RESISTANCE OF DUPLEX STAINLESS STEEL SAF2304[J]. 金属学报, 2012, 48(12): 1503-1509.
No Suggested Reading articles found!