Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (5): 573-578    DOI:
论文 Current Issue | Archive | Adv Search |
INVESTIGATIONS ON TEMPERATURE DEPENDENCE OF MECHANICAL PROPERTIES AND THE DEFORMATION MECHANISM OF A TWIP STEEL
WANG Shuhan; LIU Zhenyu; ZHANG Weina; WANG Guodong
State Key Laboratory of Rolling and Automation; Northeastern University; Shenyang 110004
Cite this article: 

WANG Shuhan LIU Zhenyu ZHANG Weina WANG Guodong. INVESTIGATIONS ON TEMPERATURE DEPENDENCE OF MECHANICAL PROPERTIES AND THE DEFORMATION MECHANISM OF A TWIP STEEL. Acta Metall Sin, 2009, 45(5): 573-578.

Download:  PDF(1035KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The TWIP (twinning induced plasticity) steel is a new developed super toughness steel. In the TWIP steel, deformation twinning is the dominate mechanism controlled by stacking fault energy (SFE) in austenitic phase during plastic deformation. Since SFE depends on temperature, it has a major influence on mechanical properties of alloys. The evolution of deformation mode in Fe–Mn–C austenitic steels with temperature and SFE has been extensively reported in literatures. However, in Fe–Mn–Al–Si austenitic steels, the literatures only focused attention on the deformation structure and mechanical properties of Fe–28Mn–1Al–0.5Si and Fe–24Mn–3.5Al–0.4Si steels in compression under different temperatures. The relationship between deformation structure and temperature for Fe–Mn–Al–Si TWIP steel under tensile test has not yet been established. More importantly, a thorough investigation on dependence of deformation mechanism on deformation temperature and SFE is stilllacking, which is one of the key factors in alloy design and new processing exploitation. In this paper, the mechanical properties of Fe–25Mn–3Si–3Al TWIP steel and the microstructure evolution with temperature have been investigated through tensile testing at 298, 373, 473 and 673 K. It was found that the strength and elongation decrease with deformation temperatures increasing. The SFE of the TWIP steel, Γ, at different temperatures have been calculated. It was pointed out that when 21 mJ/m2Γ ≤34 mJ/m2 in 298 K≤ T ≤373 K, the deformation twinning is a main deformation mechanism, while the slipping is a predominant deformation mode when Γ ≥76 mJ/m2 in T ≥673 K. The SFE value was found to decrease with temperature decreasing, and lower values of SFE would promote deformation twin production and inhibit slip. Deformation twins formed in plastic deformation act as obstacles to dislocations, resulting in high strain hardening effect so that both high elongation and ultimate tensile strength can be obtained at relatively low temperatures.

Key words:  deformation twin      high temperature deformation      deformation mechanism      stacking fault energy     
Received:  30 October 2008     
ZTFLH: 

TG115.213

 
Fund: 

Supported by National Natural Science Foundation of China (No.50873141) and National Basic Research Program of China (No.2004CB619108)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I5/573

[1] Frommeyer G, Brux U, Neumann P. ISIJ Int, 2003; 43:438
[2] Gr¨assel O, Kruger L, Frommeyer G, Meyer L W. Int J Plast, 2000; 16: 1391
[3] Allain S, Chateau J–P, Bouaziz O, Migot S, Guelton N. Mater Sci Eng, 2004; A387–389: 158
[4] Hokka M, Kuokkala V–T, Curtze S, Vuoristo T, Apostol M. J Phys IV Fr, 2006; 134: 1301
[5] Li L, Hsu T Y. Calphad, 1997; 21: 443
[6] Yoo J D, Park K T. Mater Sci Eng, 2008; A496: 417
[7] Dumay A, Chateau J P, Allain S, Migot S, Bouaziz O.Mater Sci Eng, 2008; A483–484: 184
[8] Hokka M, Kuokkala V T, Curtze S, Vuoristo T, Apostol M. J Phys IV Fr, 2006; 134: 1301
[9] Huang B X, Wang X D, Rong Y H, Wang L, Jin L. Mater Sci Eng, 2006; A438–440: 306
[10] Danaf E E, Kalidindi S R, Doherty R D. Int J Plast, 2001; 17: 1245
[11] Kalidindi S R. Int J Plast, 1998; 14: 1265
[12] Danaf E E, Kalidindi S R, Doherty R D. Metall Mater Trans, 1999; A30: 1223
[13] Zhao M C, Hanamura T, Qiu H, Nagai K, Yang K. Scr Mater, 2006; 54: 1385

[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[3] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[4] LIU Junpeng, CHEN Hao, ZHANG Chi, YANG Zhigang, ZHANG Yong, DAI Lanhong. Progress of Cryogenic Deformation and Strengthening-Toughening Mechanisms of High-Entropy Alloys[J]. 金属学报, 2023, 59(6): 727-743.
[5] ZHANG Zhefeng, LI Keqiang, CAI Tuo, LI Peng, ZHANG Zhenjun, LIU Rui, YANG Jinbo, ZHANG Peng. Effects of Stacking Fault Energy on the Deformation Mechanisms and Mechanical Properties of Face-Centered Cubic Metals[J]. 金属学报, 2023, 59(4): 467-477.
[6] HAN Dong, ZHANG Yanjie, LI Xiaowu. Effect of Short-Range Ordering on the Tension-Tension Fatigue Deformation Behavior and Damage Mechanisms of Cu-Mn Alloys with High Stacking Fault Energies[J]. 金属学报, 2022, 58(9): 1208-1220.
[7] LUO Xuan, HAN Fang, HUANG Tianlin, WU Guilin, HUANG Xiaoxu. Microstructure and Mechanical Properties of Layered Heterostructured Mg-3Gd Alloy[J]. 金属学报, 2022, 58(11): 1489-1496.
[8] ZHANG Jinyu, QU Qimeng, WANG Yaqiang, WU Kai, LIU Gang, SUN Jun. Research Progress on Irradiation Effects and Mechanical Properties of Metal/High-Entropy Alloy Nanostructured Multilayers[J]. 金属学报, 2022, 58(11): 1371-1384.
[9] YANG Zhikun, WANG Hao, ZHANG Yiwen, HU Benfu. Effect of Ta Content on High Temperature Creep Deformation Behaviors and Properties of PM Nickel Base Superalloys[J]. 金属学报, 2021, 57(8): 1027-1038.
[10] CAO Furong, DING Xin, XIANG Chao, SHANG Huihui. Flow Stress, Microstructural Evolution, and Constitutive Analysis During High-Temperature Deformation in Mg-4.4Li-2.5Zn-0.46Al-0.74Y Alloy[J]. 金属学报, 2021, 57(7): 860-870.
[11] YU Qian, CHEN Yujie, FANG Yan. Heterogeneity in Chemical Distribution and Its Impact in High-Entropy Alloys[J]. 金属学报, 2021, 57(4): 393-402.
[12] LI Jinshan, TANG Bin, FAN Jiangkun, WANG Chuanyun, HUA Ke, ZHANG Mengqi, DAI Jinhua, KOU Hongchao. Deformation Mechanism and Microstructure Control of High Strength Metastable β Titanium Alloy[J]. 金属学报, 2021, 57(11): 1438-1454.
[13] YU Chenfan, ZHAO Congcong, ZHANG Zhefeng, LIU Wei. Tensile Properties of Selective Laser Melted 316L Stainless Steel[J]. 金属学报, 2020, 56(5): 683-692.
[14] ZHANG Yang, SHAO Jianbo, CHEN Tao, LIU Chuming, CHEN Zhiyong. Deformation Mechanism and Dynamic Recrystallization of Mg-5.6Gd-0.8Zn Alloy During Multi-Directional Forging[J]. 金属学报, 2020, 56(5): 723-735.
[15] Futao DONG,Fei XUE,Yaqiang TIAN,Liansheng CHEN,Linxiu DU,Xianghua LIU. Effect of Annealing Temperature on Microstructure, Properties and Hydrogen Embrittlement of TWIP Steel[J]. 金属学报, 2019, 55(6): 792-800.
No Suggested Reading articles found!