|
|
MAGNETIC--FIELD--CONTROLLED SHAPE MEMORY EFFECT AND SUPERELASTICITY OF Ni53.2Mn22.6Ga24.2 SINGLE CRYSTAL |
YOU Suqin1; CUI Yuting1;2; WU Liang1; KONG Chunyang1; MA Yong1; YANG Xiaohong1;PAN Fusheng2 |
1 College of Physics and Information Technology; Chongqing Normal University; Chongqing 400047
2 Department of Materials Science and Engineering; Chongqing University; Chongqing 400044\par |
|
Cite this article:
. MAGNETIC--FIELD--CONTROLLED SHAPE MEMORY EFFECT AND SUPERELASTICITY OF Ni53.2Mn22.6Ga24.2 SINGLE CRYSTAL. Acta Metall Sin, 2009, 45(3): 351-355.
|
Abstract A two--step complete thermoelastic martensitic transformation, martensitic transformation and intermartensitic transformation, in Ni53.2Mn22.6Ga24.2 single crystal was proved. The transformation characteristics of the alloy under the separate and complex actions of temperature, magnetic field and stress were studied. The results show that the martensitic and intermartensitic transformations exhibit the same transition character, and this alloy exhibits a magnetic--field--controlled shape memory effect. Moreover, the stress--strain measurements of the single crystal under the magnetic field indicate that the magnetic field not only has an effect on the stress needed for reorientation of the variants during the martensitic transformation, but also makes the initial irreversible transition become reversible. The magnetically controlled superelastic characteristic of the Ni53.2Mn22.6Ga24.2 single crystal predicts the possibility of utilizing the alloy as magnetically controlled element.
|
Received: 29 August 2008
|
|
Fund: Supported by Key Project of Chinese Ministry of Education (No.207096), National Science Foundation for Postdoctoral Scientists of China (No.20060400197) and Natural Science Foundation of Chongqing of China (No.CSTC, 2007BB4232) |
[1] Murray S J, Marioni M, Allen S M, OHandley R C, Lograsso T A. Appl Phys Lett, 2000; 77: 886
[2] Wang WH,Wu G H, Chen J L, Yu C H, Gao S X, Zhan W S. Appl Phys Lett, 2000; 77: 3245
[3] Jiang C B, Wang J M, Xu H B. Appl Phys Lett, 2005; 86: 252508
[4] Wang W H, Wu G H, Chen J. L, Gao S X, Zhan W S, Wen G H, Zhang X X. Appl Phys Lett, 2001; 79: 1148
[5] Deng L F, Li Y, Jiang C B, Xu H B. Acta Metall Sin, 2004; 40: 1290
(邓丽芬, 李岩, 蒋成保, 徐惠彬. 金属学报, 2004; 40: 1290)
[6] Zayak A T, Entel P, Enkovaara J, Ayuela A, Nieminen R M. J Phys: Condens Matter, 2003; 15: 159
[7] Jiang C B, Liu J H, Zhang T, Xu H B. Acta Metall Sin, 2004; 40: 975
(蒋成保, 刘敬华, 张涛, 徐惠彬. 金属学报, 2004; 40: 975)
[8] Cui Y T, Yang X H, Kong C Y, Ma Y, Pan F S. Solid State Commun, 2006; 138: 234
[9] Chernenko V A, Segui C, Cesari E, Pons J, Kokorin V V. Phys Rev, 1998; 57B: 2659
[10] Wang W H, Chen J L, Liu Z H, Wu G H, Zhan W S. Phys Rev, 2002; 65B: 12416
[11] Martynov V V, Kokorin V V. J Phys III, 1992; 2: 739
[12] Martynov V V. J Phys Colloq, 1995; 8C: 91
[13] Wang W H, Wu G H, Chen J L, Yu C H,Wang Z, Zheng Y F, Zhao C, Zhan W S. J Phys: Condens Matter, 2000; 12: 6287
[14] Ladislav S, Oleg H. IEEE Trans Magn, 2003; 39: 3402
[15] Cui Y T, Hu H N, Liu G D, Dai X F, Liu Z H, Zhang M, Chen J L, Wu G H, Meng F B, Yan L Q, Qu J P, Li Y X. Acta Phys Sin, 2004; 53: 1450
(崔玉亭, 胡海宁, 刘国栋, 代学芳, 柳祝红, 张铭, 陈京兰, 吴光恒, 孟凡斌, 阎丽琴, 曲静萍,
李养贤. 物理学报, 2004; 53: 1450)
[16] Qu J P, Wang W H, Meng F B, Liu B D, Liu Z H, Chen J L, Li Y X,Wu G H. Chin Phys Lett, 2002; 19: 591
[17] Webster P J, Ziebeck K R A, Town S L, Peak M S. Philos Mag, 1984; 49B: 295 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|