Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (3): 356-362    DOI:
论文 Current Issue | Archive | Adv Search |
THERMOMECHANICAL MODELING OF SOLIDIFICATION PROCESS OF SQUEEZE CASTING I. Mathematic Model and Solution Methodology
HAN Zhiqiang;ZHU Wei;LIU Baicheng
Key Laboratory for Advanced Materials Processing Technology; Ministry of Education; Department of Mechanical Engineering; Tsinghua University; Beijing 100084
Cite this article: 

HAN Zhiqiang ZHU Wei LIU Baicheng. THERMOMECHANICAL MODELING OF SOLIDIFICATION PROCESS OF SQUEEZE CASTING I. Mathematic Model and Solution Methodology. Acta Metall Sin, 2009, 45(3): 356-362.

Download:  PDF(1042KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A coupled thermomechanical finite element model has been developed to simulate the temperature, stress and shape developments during the solidification process of squeeze casting. The model includes the effect of latent heat and volume shrinkage due to solidification, the mutual dependence of interfacial heat transfer and casting deformation, and the mechanical behavior of the solidified shell under the punch pressure. The stress model features a thermo--elasto--viscoplastic constitutive equation that accounts for the response of the solidified shell as well as a special treatment given to the liquid and mushy zones. A contact algorithm was employed for the casting/die interface, and an iterative algorithm was employed to simulate the movement of the punch. The model can be used to investigate the effects of die design and process parameters (die temperature, punch pressure, etc.) on the quality of castings.

Key words:  squeeze casting      thermomechanical coupling      finite element method      constitutive model     
Received:  12 June 2008     
ZTFLH: 

TG244.3

 
  O241.82

 
Fund: 

Supported by National Natural Science Foundation of China (No.50675113)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I3/356

[1] Qi P X. Spec Cast Nonferrous Alloys, 1998; (4): 32
(齐丕骧. 特种铸造及有色合金, 1998; (4): 32)

[2] Ghomashchi M R, Vikhrov A. J Mater Process Technol, 2000; 101: 1
[3] Luo S J, Chen B G, Qi P X. Liquid Forging and Squeeze Casting Technology. Beijing: Chemical Industry Press, 2007: 1
(罗守靖, 陈炳光, 齐丕骧. 液态模锻与挤压铸造技术. 北京: 化学工业出版社, 2007: 1)

[4] Song Y Q, Liu Z B, Zhou D J. J Plast Eng, 1997; 4(3): 4
(宋玉泉, 刘助柏, 周大隽. 塑性工程学报, 1997; 4(3): 4)

[5] Bai Y H, Liu J S, Ren C Y. Foundry, 2004; 53: 655
(白彦华, 刘金生, 任春艳. 铸造, 2004; 53: 655)

[6] Liu J S, Bai Y H, Li C X. J Shenyang Univ Technol, 2004;26: 506
(刘金生, 白彦华, 李晨曦. 沈阳工业大学学报, 2004; 26: 506)

[7] Li R D, Hou J, Yu Q, Bai Y H. J Shenyang Univ Technol, 2005; 27: 138
(李荣德, 侯君, 于茜, 白彦华. 沈阳工业大学学报, 2005; 27: 138)

[8] Lee J H, Kim H S, Won C W. Mater Sci Eng, 2002; A338: 182
[9] Lee J H, Kim H S, Hong S I. J Mater Process Technol, 1999; 96: 188
[10] Yu A, Li N, Hu H. Multiphase Phenomena and CFD Modelling in Materials Processes, Warrendale: Minerals, Metals and Materials Society, 2004: 189
[11] Hu H, Yu A. Model Simul Mater Sci Eng, 2002; 10: 1
[12] Lewis R W, Postek E W, Han Z Q. Int J Numer Methods Heat Fluid Flow, 2006; 16: 539
[13] Postek E W, Lewis R W, Gethin D T. J Mater Process Technol, 2005; 159: 338
[14] Lewis R W, Ravindran K. Int J Numer Methods Eng, 2000; 47: 29
[15] Zienkiewicz O C, Taylor R L. The Finite Element Method, Vol.1, 5th Ed., Oxford: Butterworth–Heinemann, 2000: 689
[16] Dupont T, Fairweather G, Johnson J P. SIAM J Numer Anal, 1974; 11: 392
[17] Li C S, Thomas B G. Metall Mater Trans, 2004; 35B: 1151
[18] Lemaitrc J, Chaboche J L. Mechanics of Solid Materials. Cambridge University Press, 1990; 556
[19] Koric S, Thomas B G. Int J Numer Methods Eng, 2006; 66: 1955
[20] Tan L J, Zabaras N. Mater Sci Eng, 2005; 404A: 197
[21] Krishna P. PhD Thesis, The University of Michigan, 2001

[1] LI Shaojie, JIN Jianfeng, SONG Yuhao, WANG Mingtao, TANG Shuai, ZONG Yaping, QIN Gaowu. Multimodal Microstructure of Mg-Gd-Y Alloy Through an Integrated Simulation of Process-Structure-Property[J]. 金属学报, 2022, 58(1): 114-128.
[2] Xuexiong LI,Dongsheng XU,Rui YANG. Crystal Plasticity Finite Element Method Investigation of the High Temperature Deformation Consistency in Dual-Phase Titanium Alloy[J]. 金属学报, 2019, 55(7): 928-938.
[3] Binshan YU,Sheliang WANG,Tao YANG,Yujiang FAN. BP Neural Netwok Constitutive Model Based on Optimization with Genetic Algorithm for SMA[J]. 金属学报, 2017, 53(2): 248-256.
[4] Yongkui LI, Chunyi QUAN, Shanping LU, Qingyang JIAO, Shijian LI, Zhonghai SUN. STUDY ON SHAPE CORRECTION OF THE THIN PLATE OF TA15 TITANIUM ALLOY BY POST WELD HEAT TREATMENT[J]. 金属学报, 2016, 52(3): 281-288.
[5] SUN Chaoyang, GUO Xiangru, HUANG Jie, GUO Ning, WANG Shanwei, YANG Jing. MODELLING OF PLASTIC DEFORMATION ON COUPLING TWINNING OF SINGLE CRYSTAL TWIP STEEL[J]. 金属学报, 2015, 51(3): 357-363.
[6] SUN Chaoyang, HUANG Jie, GUO Ning, YANG Jing. A PHYSICAL CONSTITUTIVE MODEL FOR Fe-22Mn-0.6C TWIP STEEL BASED ON DISLOCATION DENSITY[J]. 金属学报, 2014, 50(9): 1115-1122.
[7] ZHU Ruidong, DONG Wenchao, LIN Huaqiang, LU Shanping, LI Dianzhong. FINITE ELEMENT SIMULATION OF WELDING RESIDUAL STRESS FOR BUFFER BEAM OF CRH2A HIGH SPEED TRAIN[J]. 金属学报, 2014, 50(8): 944-954.
[8] LIANG Houquan, GUO Hongzhen, NING Yongquan, YAO Zekun, ZHAO Zhanglong. ANALYSIS ON THE CONSTITUTIVE RELATIONSHIP OF TC18 TITANIUM ALLOY BASED ON THE SOFTENING MECHANISM[J]. 金属学报, 2014, 50(7): 871-878.
[9] LI Yongkui, CHEN Jundan, LU Shanping. RESIDUAL STRESS IN THE WHEEL OF 42CrMo STEEL DURING QUENCHING[J]. 金属学报, 2014, 50(1): 121-128.
[10] ZHANG Jin, DENG Yunlai, YANG Jinlong, ZHANG Xinming. EXPERIMENTAL STUDIES AND CONSTITUTIVE MODELING FOR CREEP AGING OF 2124 Al ALLOY[J]. 金属学报, 2013, 49(3): 379-384.
[11] ZHU Yiguo, ZHANG Yang, ZHAO Dan. MICROMECHANICAL CONSTITUTIVE MODEL FOR PHASE TRANSFORMATION OF NiTi POLYCRYSTAL SMA
 
[J]. 金属学报, 2013, 49(1): 123-128.
[12] CHANG Zhengkai, XIAO Jinquan, CHEN Yuqiu, LIU Shanchuan, GONG Jun, SUN Chao. STUDY ON DEPOSITION OF MAGNETIC FILMS USING ARC ION PLATING[J]. 金属学报, 2012, 48(5): 547-554.
[13] JIANG Wenchun WOO Wanchuck WANG Bingying TU Shan–Tung . A STUDY OF RESIDUAL STRESS IN THE REPAIR WELD OF STAINLESS STEEL CLAD PLATE BY NEUTRON DIFFRACTION MEASUREMENT AND FINITE ELEMENT METHOD[J]. 金属学报, 2012, 48(12): 1525-1529.
[14] JIA Bin PENG Yan. CONSTITUTIVE RELATIONSHIPS OF Nb MICROALLOYED STEEL DURING HIGH TEMPERATURE DEFORMATION[J]. 金属学报, 2011, 47(4): 507-512.
[15] HAN Zhiqiang LI Jinxi YANG Wen ZHAO Haidong LIU Baicheng. MODELING AND SIMULATION ON MICROPOROSITY FORMED DURING SQUEEZE CASTING OF ALUMINUM ALLOY[J]. 金属学报, 2011, 47(1): 7-16.
No Suggested Reading articles found!