|
|
STRUCTURE EVOLUTION OF DIRECTIONALLY SOLIDIFIED Ti--43Al--3Si ALLOY II. Microstructure Evolution in the Steady--State Growth Region |
LI Xinzhong;FAN Jianglei;GUO Jingjie;SU Yanqing;FU Hengzhi |
School of Materials Science and Engineering; Harbin Institute of Technology; Harbin 150001 |
|
Cite this article:
LI Xinzhong FAN Jianglei GUO Jingjie SU Yanqing FU Hengzhi. STRUCTURE EVOLUTION OF DIRECTIONALLY SOLIDIFIED Ti--43Al--3Si ALLOY II. Microstructure Evolution in the Steady--State Growth Region. Acta Metall Sin, 2009, 45(3): 308-313.
|
Abstract Microstructure evolutions in the steady--state growth region of directionally solidified Ti--43Al--3Si (atomic fraction, %) alloy were studied at growth rates of 3---100 μm/s. There are four main phase transitions during directional solidification: L→Ti5Si3, L→α+Ti5Si3, α→α2(Ti3Al)+γ(TiAl) and α2→γ+Ti5Si3, especially, the eutectic reaction of α and Ti5Si3 is the typical solidification behavior. When the growth rate exceeds 20 μm/s, another phase transition of L→γ+Ti5Si3 also happens. With increase of growth rate, the steady--state growth microstructure changes from coarse cells to fine cells, to cellular dendrites and then to dendrites. The Ti5Si3 phase stabilizing $\alpha$ phase distributes in the α matrix at a low growth rate, and in the solidified γ matrix at a relatively high growth rate, which is unfavorable in seeding. When the growth rate is 10 μm/s, the distance needed to reach steady--state region becomes shorter, which is favourable in seeding for the present alloy.
|
Received: 29 August 2008
|
|
Fund: Supported by National Natural Science Foundation of China (Nos.50771041 and 50801019) and Post--doctor Foundation of China (No.20080430909) |
[1] Dimiduk D M. Mater Sci Eng, 1999; A263: 281
[2] Yamaguchi M, Inui H, Yokoshima S, Kishida K, Johnson D R. Mater Sci Eng, 1996; A213: 25
[3] Kim Y W. JOM, 1994; 4: 14
[4] Zhang Y G, Han Y F, Chen G L, Guo J T, Wan X J, Feng D. Intermetallics Structural Materials. Beijing: National Defence Industry Press, 2001: 705
(张永刚, 韩雅芳, 陈国良, 郭建亭, 万晓景, 冯涤. 金属间化合物结构材料. 北京: 国防工业出版社, 2001: 705)
[5] Johnson D R, Chihara K, Inui H, Yamaguchi M. Acta Mater, 1998; 46: 6529
[6] Chen G L, Lin J P. Ordered Intermetallics Structure Materials. Beijing: Metallurgical Industry Press, 1998: 35
(陈国良, 林均品. 有序金属间化合物结构材料. 北京: 冶金工业出版社, 1998: 35)
[7] Kim S E, Lee Y T, Inui M H, Yamaguichi M. Mater Sci Eng, 2002; A239–331: 25
[8] Kim S E, Lee Y T, Oh M H, Inui H, Yamaguchi M. Intermetallics, 2000; 8: 399
[9] Yamaguchi M, Johnson D R, Lee H N, Inui H. Intermetallics, 2000; 8: 511
[10] Yamanaka T, Johnson D R, Inui H, Yamaguchi M. Intermetallics, 1999; 7: 779
[11] Johnson D R, Masuda Y, Inui H, Yamaguchi M. Acta Mater, 1997; 45: 2523
[12] Johnson D R, Inui H, Yamaguchi M. Acta Mater, 1996; 44: 2523
[13] Lee H N, Johnson D R, Inui H, Oh M H, Wee D M, Yamaguchi M. Mater Sci Eng, 2002; A329–331: 19
[14] Fan J L, Li X Z, Guo J J, Su Y Q, Fu H Z. Acta Metall Sin, 2008; 45: 302
(樊江磊, 李新中, 郭景杰, 苏彦庆, 傅恒志. 金属学报, 2008; 45: 302)
[15] Johnson D R, Inui H, Muto S, Omiya Y, Yamanaka T. Acta Mater, 2006; 54: 1077
[16] Sun F S, Froes F H. Mater Sci Eng, 2003; A345: 262 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|