Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (1): 51-57    DOI:
论文 Current Issue | Archive | Adv Search |
EVOLUTION OF SECOND PHASE IN 2.25Cr-1Mo-0.25V STEEL WELD METAL DURING HIGH TEMPERATURE TEMPERING
TAO Peng1; ZHANG Chi1; YANG Zhigang1;TAKEDA Hiroyuki2
1 Key Laboratory for Advanced Materials of Ministry of Education; Department of Materials Science and Engineering; Tsinghua University; Beijing 100084 
2 Materials Design Section; Materials Research Laboratory; Kobe Steel Ltd.; Hyogo 651-2271; Japan
Cite this article: 

TAO Peng ZHANG Chi YANG Zhigang TAKEDA Hiroyuki. EVOLUTION OF SECOND PHASE IN 2.25Cr-1Mo-0.25V STEEL WELD METAL DURING HIGH TEMPERATURE TEMPERING. Acta Metall Sin, 2009, 45(1): 51-57.

Download:  PDF(2146KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The evolution of the second phase in 2.25Cr–1Mo–0.25V steel weld metal during holding at 700 ℃ for a series of durations was studied by TEM and EDX. The precipitates in the as– welded specimen are M3C carbides, and during tempering M7C3 and M23C6 carbides appeared. After long term tempering M3C carbides spheroidized and disappeared. In the early tempering stage M7C3 carbide with low wCr/wFe is metastable phase. M23C6 carbide can exist only under low tempering parameter, and M7C3 carbide with high wCr/wFe formed in the late stage is the stable phase. M3C carbides are often sphere–liked, M7C3 and M23C6 carbides are rod–shaped and lump–shaped.

Key words:  weld metal      second phase      carbide      tempering      low alloy steel 2.25Cr--1Mo--0.25V     
Received:  04 June 2008     
ZTFLH: 

TG146.1

 

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I1/51

[1] Bhadeshia H K D H. Bainite in Steels. 2nd Ed., London: The Institute of Materials, 2001: 323
[2] Davis J R. Metals Handbook. Vol.1, 10th Ed., Materials Park, OH: ASM International, 1990: 617
[3] Klueh R L, Swindeman R W. Metall Trans, 1986; 17A: 1027
[4] Miranda R M, Fortes M A. Mater Sci Eng, 1989; A108: 1
[5] Cheruvu N S. Metall Trans, 1989; 20A: 87
[6] Thomson R C, Badeshia H. Mater Sci Technol, 1994; 10: 193
[7] Fujita N, Bhadeshia H K D H. ISIJ Int, 2002; 42: 760
[8] Baker R G, Nutting J. J Iron Steel Inst, 1959; 192: 257
[9] Tsai M C, Chiou C S, Yang J R. J Mater Sci, 2003; 38: 2373
[10] Tsai M C, Yang J R. Mater Sci Eng, 2003; A340: 15
[11] Janovec J, Svoboda M, Kroupa A, Vyrostkova A. J Mater Sci, 2006; 41: 3425
[12] Sourmail T. Mater Sci Technol, 2001; 17: 1
[13] Inouoe A, Masumoto T. Metall Trans, 1980; 11A: 739
[14] Lane J R, Grant N J. Trans ASM, 1952; 44: 113
[15] Sims C T. J Met, 1969; 21: 27
[16] V´yrostkov´a A, Kroupa A, Janovec J, Janovec J. Acta Mater, 1998; 46: 31
[17] Kroupa A, V´yrostkov´a A, Svoboda M, Janovec J. Acta Mater, 1998; 46: 39
[18] Janovec J, Svoboda M, Vyrostkova A, Kroupa A. Mater Sci Eng, 2005; A402: 288

[1] LIU Jihao, ZHOU Jian, WU Huibin, MA Dangshen, XU Huixia, MA Zhijun. Segregation and Solidification Mechanism in Spray-Formed M3 High-Speed Steel[J]. 金属学报, 2023, 59(5): 599-610.
[2] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[3] LI Shanshan, CHEN Yun, GONG Tongzhao, CHEN Xingqiu, FU Paixian, LI Dianzhong. Effect of Cooling Rate on the Precipitation Mechanism of Primary Carbide During Solidification in High Carbon-Chromium Bearing Steel[J]. 金属学报, 2022, 58(8): 1024-1034.
[4] SHEN Guohui, HU Bin, YANG Zhanbing, LUO Haiwen. Influence of Tempering Temperature on Mechanical Properties and Microstructures of High-Al-Contained Medium Mn Steel Having δ-Ferrite[J]. 金属学报, 2022, 58(2): 165-174.
[5] ZHOU Cheng, ZHAO Tan, YE Qibin, TIAN Yong, WANG Zhaodong, GAO Xiuhua. Effects of Tempering Temperature on Microstructure and Low-Temperature Toughness of 1000 MPa Grade NiCrMoV Low Carbon Alloyed Steel[J]. 金属学报, 2022, 58(12): 1557-1569.
[6] HE Shuwen, WANG Minghua, BAI Qin, XIA Shuang, ZHOU Bangxin. Effect of TaC Content on Microstructure and Mechanical Properties of WC-TiC-TaC-Co Cemented Carbide[J]. 金属学报, 2020, 56(7): 1015-1024.
[7] WANG Zhanhua, HUI Weijun, XIE Zhiqi, ZHANG Yongjian, ZHAO Xiaoli. Effects of Tempering Temperature on Microstructure and Mechanical Properties of a Mn-Cr Type Bainitic Forging Steel[J]. 金属学报, 2020, 56(11): 1441-1451.
[8] WU Huajian, CHENG Renshan, LI Jingren, XIE Dongsheng, SONG Kai, PAN Hucheng, QIN Gaowu. Effect of Al Content on Microstructure and Mechanical Properties of Mg-Sn-Ca Alloy[J]. 金属学报, 2020, 56(10): 1423-1432.
[9] YANG Ke,LIANG Ye,YAN Wei,SHAN Yiyin. Preferential Distribution of Boron and its Effect on Microstructure and Mechanical Properties of (9~12)%Cr Martensitic Heat Resistant Steels[J]. 金属学报, 2020, 56(1): 53-65.
[10] LI Jiarong,XIE Hongji,HAN Mei,LIU Shizhong. High Cycle Fatigue Behavior of Second Generation Single Crystal Superalloy[J]. 金属学报, 2019, 55(9): 1195-1203.
[11] Futao DONG,Fei XUE,Yaqiang TIAN,Liansheng CHEN,Linxiu DU,Xianghua LIU. Effect of Annealing Temperature on Microstructure, Properties and Hydrogen Embrittlement of TWIP Steel[J]. 金属学报, 2019, 55(6): 792-800.
[12] Xiaodong LIN,Qunjia PENG,En-Hou HAN,Wei KE. Effect of Annealing on Microstructure of Thermally Aged 308L Stainless Steel Weld Metal[J]. 金属学报, 2019, 55(5): 555-565.
[13] HUANG Yu, CHENG Guoguang, LI Shijian, DAI Weixing. Precipitation Mechanism and Thermal Stability of Primary Carbide in Ce Microalloyed H13 Steel[J]. 金属学报, 2019, 55(12): 1487-1494.
[14] ZHANG Min,JIA Fang,CHENG Kangkang,LI Jie,XU Shuai,TONG Xiongwei. Influence of Quenching and Tempering on Microstructure and Properties of Welded Joints of G520 Martensitic Steel[J]. 金属学报, 2019, 55(11): 1379-1387.
[15] Rongchang ZENG, Lanyue CUI, Wei KE. Biomedical Magnesium Alloys: Composition, Microstructure and Corrosion[J]. 金属学报, 2018, 54(9): 1215-1235.
No Suggested Reading articles found!