Please wait a minute...
Acta Metall Sin  2018, Vol. 54 Issue (9): 1215-1235    DOI: 10.11900/0412.1961.2018.00032
Orginal Article Current Issue | Archive | Adv Search |
Biomedical Magnesium Alloys: Composition, Microstructure and Corrosion
Rongchang ZENG1(), Lanyue CUI1, Wei KE2
1 College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China;
Download:  HTML  PDF(4210KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Magnesium alloys, with good biocompatibility and mechanical-compatibility, can be developed as next generation promising biomaterials. This paper summerizes the principle and the cutting-edge advances of alloying of magnesium alloys as degradable biomaterials. The effects of alloy elements on the material and biological properties of magnesium alloys are analyzed. The focus is laid on the influence of microstructure (grain size, secondary phase or intermetallic compound, long-period stacking ordered (LPSO) phase and quasi-crystal phase), heat treatment and surface oxide film on degradation and their critical progress on corrosion morphology and mechanism. Several outlooks on bio-magnesium alloys are proposed.

Key words:  magnesium alloy      alloying      second phase      corrosion      biomaterial     
Received:  22 January 2018     
ZTFLH:  TG406  
Fund: Supported by National Natural Science Foundation of China (No.51571134) and Shandong University of Science and Technology Research Fund (No.2014TDJH104)

Cite this article: 

Rongchang ZENG, Lanyue CUI, Wei KE. Biomedical Magnesium Alloys: Composition, Microstructure and Corrosion. Acta Metall Sin, 2018, 54(9): 1215-1235.

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2018.00032     OR     https://www.ams.org.cn/EN/Y2018/V54/I9/1215

Fig.1  Relationship between corrosion current density and grain size (d) of the as-extruded ZK60 alloys
Fig.2  Effects of the grain size and twin crystal on the corrosion current density of the as-rolled AZ31 alloy
Fig.3  Schematic diagrams of the corrosion mechanisms of the as cast (a1~a4), T4- (b1~b4) and T6- (c1~c4 and d1, d2) treated Mg-Al-Gd alloys[102]
Fig.4  Schematic models of the corrosion attack occurring in the as-cast duplex structured Mg-Li alloys without I-phase (a) and with I-phase (b)[115]
Fig.5  Schematic diagram of the mechanism of natural formation of the oxide film on dual phase Mg-Li-Ca alloys[35]
Fig.6  Schematic diagram of the corrosion mechanism of dual phase Mg-Li-Ca alloys[35]
(a) the corrosion product film peeled off from the surface of the cast alloy due to the greater stress existing in the film, and thus fresh surface was exposed to the solution
(b) tubular paths in the oxide film on the extruded alloy were jammed and sealed by compounds such as LiOH, Mg(OH)2, CaCO3 and MgCO3
Fig.7  Model of pitting corrosion for Mg alloy AM60[62]
Fig.8  Microstructures (a, b), intergranular corrosion morphologies (c, d) and schematic diagram of intergranular corrosion (e) of magnesium alloy ZK60[50]
[1] Zeng R C, Ke W, Xu Y B, et al.Recent development and application of magnesium alloys[J]. Acta Metall. Sin., 2001, 37: 673(曾荣昌, 柯伟, 徐永波等. Mg合金的最新发展及应用前景[J]. 金属学报, 2001, 37: 673)
[2] Cui L Y, Gao S D, Li P P, et al.Corrosion resistance of a self-healing micro-arc oxidation/polymethyltrimethoxysilane composite coating on magnesium alloy AZ31[J]. Corros. Sci., 2017, 118: 84
[3] Zhang X N, Zuo M C, Zhang S X, et al.Advances in clinical research of biodegradable stents[J]. Acta Metall. Sin., 2017, 53: 1215(张小农, 左敏超, 张绍翔等. 医用可降解血管支架临床研究进展[J]. 金属学报, 2017, 53: 1215)
[4] Zheng Y F, Yang H T.Research progress in biodegradable metals forstent application[J]. Acta Metall. Sin., 2017, 53: 1227(郑玉峰, 杨宏韬. 血管支架用可降解金属研究进展[J]. 金属学报, 2017, 53: 1227)
[5] Xi T F, Wei L N, Liu J, et al.Research progress in bioresorbable magnesium scaffolds[J]. Acta Metall. Sin., 2017, 53: 1153(奚廷斐, 魏丽娜, 刘婧等. 镁合金全降解血管支架研究进展[J]. 金属学报, 2017, 53: 1153)
[6] Yuan G Y, Niu J L.Research progress of biodegradable magnesium alloys for orthopedic applications[J]. Acta Metall. Sin., 2017, 53: 1168(袁广银, 牛佳林. 可降解医用镁合金在骨修复应用中的研究进展[J]. 金属学报, 2017, 53: 1168)
[7] Zeng R C, Dietzel W, Witte F, et al.Progress and challenge for magnesium alloys as biomaterials[J]. Adv. Eng. Mater., 2008, 10: B3
[8] Zeng R C, Cui L Y, Jiang K, et al.In vitro corrosion and cytocompatibility of a microarc oxidation coating and poly(L-lactic acid) composite coating on Mg-1Li-1Ca alloy for orthopedic implants[J]. ACS Appl. Mater. Interfaces, 2016, 8: 10014
[9] Zheng Y F, Gu X N, Witte F.Biodegradable metals[J]. Mater. Sci. Eng., 2014, R77: 1
[10] Cui L Y, Zeng R C, Guan S K, et al.Degradation mechanism of micro-arc oxidation coatings on biodegradable Mg-Ca alloys: The influence of porosity[J]. J. Alloys Compd., 2017, 695: 2464
[11] Trumbo P, Schlicker S, Yates A A, et al.Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids[J]. J. Am. Diet. Assoc., 2002, 102: 1621
[12] Liu X J, Zhu Y X, Gao F.Inorganic Chemistry [M]. 2nd Ed., Beijing: Science Press, 2010: 1(刘新锦, 朱亚先, 高飞. 无机元素化学 [M]. 第2版. 北京: 科学出版社, 2010: 1)
[13] Ford E S, Mokdad A H.Dietary magnesium intake in a national sample of U.S. adults[J]. J. Nutr., 2003, 133: 2879
[14] Yuan G Y, Zhang X B, Niu J L, et al.Research progress of new type of degradable biomedical magnesium alloys JDBM[J]. Chin. J. Nonferrous Met., 2011, 21: 2476(袁广银, 章晓波, 牛佳林等. 新型可降解生物医用镁合金JDBM的研究进展[J]. 中国有色金属学报, 2011, 21: 2476)
[15] Yamamoto A.Biomedical application of magnesium alloys[J]. J. Jpn. Inst. Light Met., 2008, 58: 570
[16] Purnama A, Hermawan H, Couet J, et al.Assessing the biocompatibility of degradable metallic materials: State-of-the-art and focus on the potential of genetic regulation[J]. Acta Biomater., 2010, 6: 1800
[17] Bowen P K, Drelich J, Goldman J.Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents[J]. Adv. Mater., 2013, 25: 2577
[18] Zhang Y F, Xu J K, Ruan Y C, et al.Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats[J]. Nat. Med., 2016, 22: 1160
[19] Ren Y B, Yang K, Liang Y.Research and development of new biomedical metallic materials[J]. Mater. Rev., 2002, 16: 12(任伊宾, 杨柯, 梁勇. 新型生物医用金属材料的研究和进展[J]. 材料导报, 2002, 16: 12)
[20] Wang Z, Yang J, Li J J.In vitro experimental study on the antibacterial properties of new orthopedic implant material-magnesium alloy[J]. J. China Med. Univ., 2014, 43: 1142.(王湛, 杨军, 李建军. 新型骨科植入物镁合金材料抗菌性能的体外实验研究[J]. 中国医科大学学报, 2014, 43: 1142)
[21] Liu Y, Zheng Y F, Hayes B.Degradable, absorbable or resorbable—What is the best grammatical modifier for an implant that is eventually absorbed by the body?[J]. Sci. China Mater., 2017, 60: 377
[22] Pan F S, Han E H.High Performance Deformation Magnesium Alloy and Its Processing Technology [M]. Beijing: Science Press, 2007: 1(潘复生, 韩恩厚. 高性能变形镁合金及加工技术 [M]. 北京: 科学出版社, 2007: 1)
[23] Ding W J.Science and Technology of Magnesium Alloy [M]. Beijing: Science Press, 2007: 1(丁文江. 镁合金科学与技术[M]. 北京: 科学出版社, 2007: 1)
[24] Zeng R C, Guo X L, Liu C L, et al.Study on corrosion of medical Mg-Ca and Mg-Li-Ca alloys[J]. Acta Metall. Sin., 2011, 11: 1477(曾荣昌, 郭小龙, 刘成龙等. 医用Mg-Ca和Mg-Li-Ca合金腐蚀研究[J]. 金属学报, 2011, 11: 1477)
[25] Song G L.Control of biodegradation of biocompatable magnesium alloys[J]. Corros. Sci., 2007, 49: 1696
[26] Wei Y H, Xu B S.Theory and Practice of Corrosion Protection of Magnesium Alloy [M]. Beijing: Metallurgical Industry Press, 2007: 1(卫英慧, 许并社. 镁合金腐蚀防护的理论与实践 [M]. 北京: 冶金工业出版社, 2007: 1)
[27] Zhang S X, Zhang X N, Zhao C L, et al.Research on an Mg-Zn alloy as a degradable biomaterial[J]. Acta Biomater., 2010, 6: 626
[28] Huan Z G, Leeflang M A, Zhou J, et al.In vitro degradation behavior and cytocompatibility of Mg-Zn-Zr alloys[J]. J. Mater. Sci.: Mater. Med., 2010, 21: 2623
[29] Wang H X, Guan S K, Wang X, et al.In vitro degradation and mechanical integrity of Mg-Zn-Ca alloy coated with Ca-deficient hydroxyapatite by the pulse electrodeposition process[J]. Acta Biomater., 2010, 6: 1743
[30] Ran Q, Lukas H L, Effenberg G, et al.Thermodynamic optimization of the Mg-Y system[J]. Calphad, 1988, 12: 375
[31] Nayeb-Hashemi A A, Clark J B. The Mg-Nd system (Magnesium-Neodymium)[J]. Bull. Alloy Phase Diagrams, 1988, 9: 618
[32] Zhang J, Zong Y, Yuan G Y, et al.Degradable behavior of new-type medical Mg-Nd-Zn-Zr magnesium alloy in simulated body fluid[J]. Chin. J. Nonferrous Met., 2010, 20: 1989(张佳, 宗阳, 袁广银等. 新型医用Mg-Nd-Zn-Zr镁合金在模拟体液中的降解行为[J]. 中国有色金属学报, 2010, 20: 1989)
[33] Ding Z Y, Cui L Y, Zeng R C, et al.Exfoliation corrosion of extruded Mg-Li-Ca alloy[J]. J. Mater. Sci. Technol., 2018, 34: 1550
[34] Nene S S, Kashyap B P, Prabhu N, et al.Microstructure refinement and its effect on specific strength and bio-corrosion resistance in ultralight Mg-4Li-1Ca (LC41) alloy by hot rolling[J]. J. Alloys Compd., 2014, 615: 501
[35] Zeng R C, Sun L, Zheng Y F, et al.Corrosion and characterisation of dual phase Mg-Li-Ca alloy in Hank's solution: The influence of microstructural features[J]. Corros. Sci., 2014, 79: 69
[36] Zeng R C, Qi W C, Zhang F, et al.In vitro corrosion of Mg-1.21Li-1.12Ca-1Y alloy[J]. Prog. Nat. Sci., 2014, 24: 492
[37] Bornapour M, Muja N, Shum-Tim D, et al.Biocompatibility and biodegradability of Mg-Sr alloys: The formation of Sr-substituted hydroxyapatite[J]. Acta Biomater., 2013, 9: 5319
[38] Zhao C Y, Pan F S, Zhang L, et al.Microstructure, mechanical properties, bio-corrosion properties and cytotoxicity of as-extruded Mg-Sr alloys[J]. Mater. Sci. Eng., 2017, C70: 1081
[39] Gu X N, Xie X H, Li N, et al.In vitro and in vivo studies on a Mg-Sr binary alloy system developed as a new kind of biodegradable metal[J]. Acta Biomater., 2012, 8: 2360
[40] Ogawa Y, Ando D, Sutou Y, et al.A lightweight shape-memory magnesium alloy[J]. Science, 2016, 353: 368
[41] Kula A, Silva C J, Niewczas M.Grain size effect on deformation behaviour of Mg-Sc alloys[J]. J. Alloys Compd., 2017, 727: 642
[42] Silva C J, Kula A, Mishra R K, et al.Mechanical properties of Mg-Sc binary alloys under compression[J]. Mater. Sci. Eng., 2017, A692: 199
[43] Liang G, Schulz R.Synthesis of Mg-Ti alloy by mechanical alloying[J]. J. Mater. Sci., 2003, 38: 1179
[44] Garcés G, Pérez P, Adeva P.Mechanical characterization of the alloy Mg-14% Ti-1% Al-0.9% Mn (wt.%) synthesized by physical vapour deposition[J]. J. Alloys Compd., 2002, 333: 219
[45] Zeng R C, Jiang K, Li S Q, et al.Mechanical and corrosion properties of Al/Ti film on magnesium alloy AZ31B[J]. Front. Mater. Sci., 2015, 9: 66
[46] Liu H B, Qi G H, Ma Y T, et al.Microstructure evolution and mechanical properties of Mg-Ge binary magnesium alloys[J]. Mater. Res. Innovations, 2013, 14: 154
[47] Bian D, Zhou W R, Deng J X, et al.Development of magnesium-based biodegradable metals with dietary trace element germanium as orthopaedic implant applications[J]. Acta Biomater., 2017, 64: 421
[48] Song G L.Corrosion and Pretection of Magnesium Alloys [M]. Beijing: Chemical Industry Press, 2006: 1(宋光铃. 镁合金腐蚀与防护 [M]. 北京: 化学工业出版社, 2006: 1)
[49] Ha W, Kim Y J.Effects of cover gases on melt protection of Mg alloys[J]. J. Alloys Compd., 2006, 422: 208
[50] Zeng R C, Kainer K U, Blawert C, et al.Corrosion of an extruded magnesium alloy ZK60 component—The role of microstructural features[J]. J. Alloys Compd., 2011, 509: 4462
[51] Zeng R C, Han E H, Ke W.Corrosion of artificial aged magnesium alloy AZ80 in 3.5 wt pct NaCl solutions[J]. J. Mater. Sci. Technol., 2007, 23: 353
[52] Song Y W, Shan D Y, Chen R S, et al.Corrosion characterization of Mg-8Li alloy in NaCl solution[J]. Corros. Sci., 2009, 51: 1087
[53] Dexter S C.Localized Corrosion[M]. Houston: National Association of Corrosion Engineers, 1974: 1
[54] Zeng R C, Qi W C, Cui H Z, et al.In vitro corrosion of as-extruded Mg-Ca alloys—The influence of Ca concentration[J]. Corros. Sci., 2015, 96: 23
[55] Feliu S Jr, Galván J C, Pardo A, et al.Native air-formed oxide film and its effect on magnesium alloys corrosion[J]. Open Corros. J., 2010, 3: 80
[56] Kirkland N T, Lespagnol J, Birbilis N, et al.A survey of bio-corrosion rates of magnesium alloys[J]. Corros. Sci., 2010, 52: 287
[57] Rad H R B, Idris M H, Kadir M R A, et al. Microstructure analysis and corrosion behavior of biodegradable Mg-Ca implant alloys[J]. Mater. Des., 2011, 33: 88
[58] Sun Y, Zhang B P, Wang Y, et al.Preparation and characterization of a new biomedical Mg-Zn-Ca alloy[J]. Mater. Des., 2012, 34: 58
[59] Harandi S E, Mirshahi M, Koleini S, et al.Effect of calcium content on the microstructure, hardness and in-vitro corrosion behavior of biodegradable Mg-Ca binary alloy[J]. Mater. Res., 2013, 16: 11
[60] Drynda A, Hassel T, Hoehn R, et al.Development and biocompatibility of a novel corrodible fluoride-coated magnesium-calcium alloy with improved degradation kinetics and adequate mechanical properties for cardiovascular applications[J]. J. Biomed. Mater. Res., 2010, 93A: 763
[61] Yim C D, Kim Y M, You B S.Effect of Ca addition on the corrosion resistance of gravity cast AZ31 magnesium alloy[J]. Mater. Trans., 2007, 48: 1023
[62] Zeng R C, Zhou W Q, Han E H, et al.Effect of pH values on as-extruded magnesium alloy AM60[J]. Acta Metall. Sin., 2005, 41: 307(曾荣昌, 周婉秋, 韩恩厚等. pH值对挤压Mg合金AM60腐蚀的影响[J]. 金属学报, 2005, 41: 307)
[63] Zeng R C, Han E H, Liu L, et al.Effect of rolled microstructure on fatigue properties of magnesium alloy AM60[J]. Chin. J. Mater. Res. 2003, 17: 241(曾荣昌, 韩恩厚, 刘路等. 轧制组织对镁合金AM60疲劳性能的影响[J]. 材料研究学报, 2003, 17: 241)
[64] Zhao C L, Wu H L, Hou P, et al.Enhanced corrosion resistance and antibacterial property of Zn doped DCPD coating on biodegradable Mg[J]. Mater. Lett., 2016, 180: 42
[65] Li Y C, Wen C E, Mushahary D, et al.Mg-Zr-Sr alloys as biodegradable implant materials[J]. Acta Biomater., 2012, 8: 3177
[66] Shi D L.Introduction to Biological Materials [M]. Beijing: Tsinghua University Press, 2005: 1(时东陆. 生物材料导论 [M]. 北京: 清华大学出版社, 2005: 1)
[67] Gu X N, Li S S, Li X M, et al.Magnesium based degradable biomaterials: A review[J]. Front. Mater. Sci., 2014, 8: 200
[68] Gu X N, Zheng Y F, Cheng Y, et al.In vitro corrosion and biocompatibility of binary magnesium alloys[J]. Biomaterials, 2009, 30: 484
[69] Sansone M E, Ziegler D K.Lithium toxicity: A review of neurologic complications[J]. Clin. Neuropharmacol., 1985, 8: 242
[70] Feyerabend F, Fischer J, Holtz J, et al.Evaluation of short-term effects of rare earth and other elements used in magnesium alloys on primary cells and cell lines[J]. Acta Biomater., 2010, 6: 1834
[71] Zhou W R, Zheng Y F, Leeflang M A, et al.Mechanical property, biocorrosion and in vitro biocompatibility evaluations of Mg-Li-(Al)-(RE) alloys for future cardiovascular stent application[J]. Acta Biomater., 2013, 9: 8488
[72] Vogt C, Bechstein K, Gruhl S, et al.Investigation of the degradation of biodegradable Mg implant alloys in vitro and in vivo by analytical methods [A]. Proceedings of 8th International Conference on Magnesium Alloys and their Applications[C]. Weimar, Germany: Wiley-VCH, 2010: 1162
[73] Witte F, Kaese V, Haferkamp H, et al.In vivo corrosion of four magnesium alloys and the associated bone response[J]. Biomaterials, 2005, 26: 3557
[74] Venugopal B, Luckey T D.Metal Toxicity in Mammals [M]. New York: Plenum Press, 1978: 1
[75] Zuo Z Y, Bo Y H, Yang X D, et al.Effect of lanthanides on oxygen- carrier function of hemoglobin and their interaction[J]. J. Chin. Rare Earth Soc., 1996, 14: 336(左智颖, 薄云红, 杨晓达等. 稀土对血红蛋白载氧功能的抑制及与血红蛋白的作用[J]. 中国稀土学报, 1996, 14: 336)
[76] Walker J, Shadanbaz S, Woodfield T B F, et al. Magnesium biomaterials for orthopedic application: A review from a biological perspective[J]. J. Biomed. Mater. Res., 2014, 102B: 1316
[77] Wu R Z, Zhang J H, Yin D S.Preparation and Processing Technology of Advanced Magnesium Alloy [M]. Beijing: Science Press, 2012: 1(巫瑞智, 张景怀, 尹冬松. 先进镁合金制备与加工技术 [M]. 北京: 科学出版社, 2012: 1)
[78] Hort N, Huang Y, Fechner D, et al.Magnesium alloys as implant materials—Principles of property design for Mg-RE alloys[J]. Acta Biomater., 2010, 6: 1714
[79] Witte F, Abeln I, Switzer E, et al.Evaluation of the skin sensitizing potential of biodegradable magnesium alloys[J]. J. Biomed. Mater. Res., 2010, 86A: 1041
[80] Witte F, Fischer J, Nellesen J, et al.In vitro and in vivo corrosion measurements of magnesium alloys[J]. Biomaterials, 2006, 27: 1013
[81] Huang Y, Gan W, Kainer K U, et al.Role of multi-microalloying by rare earth elements in ductilization of magnesium alloys[J]. J. Magnesium Alloys, 2014, 2: 1
[82] Li Y C, Hodgson P D, Wen C E.The effects of calcium and yttrium additions on the microstructure, mechanical properties and biocompatibility of biodegradable magnesium alloys[J]. J. Mater. Sci., 2011, 46: 365
[83] Ardelean H, Seyeux A, Zanna S, et al.Insight in the corrosion mechanism and designing of corrosion protection coatings for the replacement of hexavalent chromium-based surface treatments for Mg-Y-RE-Zr alloy[C]. Materials Science and Technology Conference and Exhibition 2011, MS and T'11, 2011, 2: 1086
[84] Zhang E L, He W W, Du H, et al.Microstructure, mechanical properties and corrosion properties of Mg-Zn-Y alloys with low Zn content[J]. Mater. Sci. Eng., 2008, A488: 102
[85] He W W, Zhang E L, Yang K.Effect of Y on the bio-corrosion behavior of extruded Mg-Zn-Mn alloy in Hank's solution[J]. Mater. Sci. Eng., 2010, C30: 167
[86] Wang J Q, Qin J Y, Gu X N, et al.Bulk metallic glasses based on ytterbium and calcium[J]. J. Non-Cryst. Solids, 2011, 357: 1232
[87] Yu H J, Wang J Q, Shi X T, et al.Ductile biodegradable Mg-based metallic glasses with excellent biocompatibility[J]. Adv. Funct. Mater., 2013, 23: 4793
[88] Kubásek J, Vojtěch D, Lipov J, et al.Structure, mechanical properties, corrosion behavior and cytotoxicity of biodegradable Mg-X (X=Sn, Ga, In) alloys[J]. Mater. Sci. Eng., 2013, C33: 2421
[89] Zhen Z, Xi T F, Zheng Y F, et al.In vitro study on Mg-Sn-Mn alloy as biodegradable metals[J]. J. Mater. Sci. Technol., 2014, 30: 675
[90] Zhao C Y, Pan F S, Zhao S, et al.Preparation and characterization of as-extruded Mg-Sn alloys for orthopedic applications[J]. Mater. Des., 2015, 70: 60
[91] Tian T, Zhang D F, Hu G S, et al.Microstructures and elevated temperature mechanical properties of as-extruded ZM61-Sn alloys[J]. Rare Met. Mater. Eng., 2017, 46: 2102
[92] Ye X Y, Chen M F, Yang M, et al.In vitro corrosion resistance and cytocompatibility of nano-hydroxyapatite reinforced Mg-Zn-Zr composites[J]. J. Mater. Sci.: Mater. Med., 2010, 21: 1321
[93] Williams G, Dafydd H A L, Mcmurray H N, et al. The influence of arsenic alloying on the localised corrosion behaviour of magnesium[J]. Electrochim. Acta, 2016, 219: 401
[94] Birbilis N, Williams G, Gusieva K, et al.Poisoning the corrosion of magnesium[J]. Electrochem. Commun., 2013, 34: 295
[95] Song G L, Mishra R, Xu Z Q.Crystallographic orientation and electrochemical activity of AZ31 Mg alloy[J]. Electrochem. Commun., 2010, 12: 1009
[96] Xin R L, Luo Y M, Zuo A L, et al.Texture effect on corrosion behavior of AZ31 Mg alloy in simulated physiological environment[J]. Mater. Lett., 2012, 72: 1
[97] Zhao Y C, Huang G S, Wang G G, et al.Influence of grain orientation on the corrosion behavior of rolled AZ31 magnesium alloy[J]. Acta Metall. Sin.(Engl. Lett.), 2015, 28: 1387
[98] Aung N N, Zhou W.Effect of grain size and twins on corrosion behaviour of AZ31B magnesium alloy[J]. Corros. Sci., 2010, 52: 589
[99] Ma G L, Han G, Liu X F.Grain refining efficiency of a new Al-1B-0.6C master alloy on AZ63 magnesium alloy[J]. J. Alloys Compd., 2010, 491: 165
[100] Zhou W, Shen T, Aung N N.Effect of heat treatment on corrosion behaviour of magnesium alloy AZ91D in simulated body fluid[J]. Corros. Sci., 2010, 52: 1035
[101] Shen C, Zhang X B, Xue Y J, et al.Effect of heat treatment on microstructure and corrosion behavior of Mg-Y-Cu-Zr magnesium alloy with LPSO structure[J]. Trans. Mater. Heat Treat., 2015, 36: 137(沈崇, 章晓波, 薛亚军等. 热处理对含LPSO结构Mg-Y-Cu-Zr镁合金组织与腐蚀行为的影响[J]. 材料热处理学报, 2015, 36: 137)
[102] Lu F M, Ma A B, Jiang J H, et al.Significantly improved corrosion resistance of heat-treated Mg-Al-Gd alloy containing profuse needle-like precipitates within grains[J]. Corros. Sci., 2015, 94: 171
[103] Kirkland N T, Birbilis N, Walker J, et al.In-vitro dissolution of magnesium-calcium binary alloys: Clarifying the unique role of calcium additions in bioresorbable magnesium implant alloys[J]. J. Biomed. Mater. Res., 2010, 95B: 91
[104] Song G L, Shan D Y, Han E H.Pitting corrosion of a rare earth Mg alloy GW93[J]. J. Mater. Sci. Technol., 2017, 9: 954
[105] Song G L, Atrens A.Corrosion mechanisms of magnesium alloys[J]. Adv. Eng. Mater., 1999, 1: 11
[106] Liu C, Yang H Z, Wan P, et al.Study on biodegradation of the second phase Mg17Al12 in Mg-Al-Zn Alloys: In vitro experiment and thermodynamic calculation[J]. Mater. Sci. Eng., 2014, C35: 1
[107] Kannan M B, Koc E, Unal M.Biodegradability of β-Mg17Al12 phase in simulated body fluid[J]. Mater. Lett., 2012, 82: 54
[108] Zhang X B, Wu Y J, Xue Y J, et al.Biocorrosion behavior and cytotoxicity of a Mg-Gd-Zn-Zr alloy with long period stacking ordered structure[J]. Mater. Lett., 2012, 86: 42
[109] Peng Q M, Guo J X, Fu H, et al.Degradation behavior of Mg-based biomaterials containing different long-period stacking ordered phases[J]. Sci. Rep., 2014, 4: 3620
[110] O?orbe E, Garcés G, Dobes F, et al.High-temperature mechanical behavior of extruded Mg-Y-Zn alloy containing LPSO phases[J]. Metall. Mater. Trans., 2013, 44A: 2869
[111] Srinivasan A, Blawert C, Huang Y, et al.Corrosion behavior of Mg-Gd-Zn based alloys in aqueous NaCl solution[J]. J. Magnes. Alloys, 2014, 2: 245
[112] Zhao X, Shi L L, Xu J.Mg-Zn-Y alloys with long-period stacking ordered structure: In vitro assessments of biodegradation behavior[J]. Mater. Sci. Eng., 2013, C33: 3627
[113] Shi F, Wang C Q, Zhang Z M.Microstructures, corrosion and mechanical properties of as-cast Mg-Zn-Y-(Gd) alloys[J]. Trans. Nonferrous Met. Soc. China, 2015, 25: 2172
[114] Yamasaki M, Izumi S, Kawamura Y, et al.Corrosion and passivation behavior of Mg-Zn-Y-Al alloys prepared by cooling rate-controlled solidification[J]. Appl. Surf. Sci., 2011, 257: 8258
[115] Xu D K, Han E H.Effect of quasicrystalline phase on improving the corrosion resistance of a duplex structured Mg-Li alloy[J]. Scr. Mater., 2014, 71: 21
[116] Song Y W, Shan D Y, Chen R S, et al.Investigation of surface oxide film on magnesium lithium alloy[J]. J. Alloys Compd., 2009, 484: 585
[117] Kim H S, Kim G H, Kim H, et al.Enhanced corrosion resistance of high strength Mg-3Al-1Zn alloy sheets with ultrafine grains in a phosphate-buffered saline solution[J]. Corros. Sci., 2013, 74: 139
[118] Cui L Y, Hu Y, Zeng R C, et al.New insights into the effect of Tris-HCl and Tris on corrosion of magnesium alloy in presence of bicarbonate, sulfate, hydrogen phosphate and dihydrogen phosphate ions[J]. J. Mater. Sci. Technol., 2017, 33: 971
[119] Zeng R C, Chen J, Zhang J.Research and progress of galvanic corrosion of magnesium alloys[J]. Mater. Rev., 2008, 22: 107(曾荣昌, 陈君, 张津. 镁合金电偶腐蚀研究及其进展[J]. 材料导报, 2008, 22: 107)
[120] Jia J X, Atrens A, Song G, et al.Simulation of galvanic corrosion of magnesium coupled to a steel fastener in NaCl solution[J]. Mater. Corros., 2005, 56: 468
[121] Lafront A M, Zhang W, Jin S, et al.Pitting corrosion of AZ91D and AJ62x magnesium alloys in alkaline chloride medium using electrochemical techniques[J]. Electrochim. Acta, 2005, 51: 489
[122] Andreatta F, Apachitei I, Kodentsov A A, et al.Volta potential of second phase particles in extruded AZ80 magnesium alloy[J]. Electrochim. Acta, 2006, 51: 3551
[123] Zeng R C, Chen J, Dietzel W, et al.Corrosion of friction stir welded magnesium alloy AM50[J]. Corros. Sci., 2009, 51: 1738
[124] Daloz D, Michot G.Influence of the consolidation step on the mechanical properties of rapidly solidified Mg-Al-Zn Alloys[J]. Int. J. Rapid Solidif., 1996, 9: 289
[125] Ghali E.General, Galvanic,Localized Corrosion of Aluminum and Its Alloys[M]. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010: 1
[126] Zeng R C, Jin Z, Huang W J, et al.Review of studies on corrosion of magnesium alloys[J]. Trans. Nonferrous Met. Soc. China, 2006, 16: 763
[127] Morishige T, Doi H, Goto T, et al. Exfoliation corrosion behavior of cold-rolled Mg-14 mass% Li-1 mass% Al alloy in NaCl Solution [J]. Mater. Trans., 2013, 54: 1863
[128] Morishige T, Obata Y, Goto T, et al.Effect of Al composition on the corrosion resistance of Mg-14 mass% Li System Alloy[J]. Mater. Trans., 2016, 57: 1853
[129] Atrens A, Liu M, Zainal Abidin N I. Corrosion mechanism applicable to biodegradable magnesium implants[J]. Mater. Sci. Eng., 2011, B176: 1609
[130] Shi Z M, Atrens A.An innovative specimen configuration for the study of Mg corrosion[J]. Corros. Sci., 2011, 53: 226
[131] Eliezer A, Gutman E M, Abramov E, et al.Corrosion fatigue of die-cast and extruded magnesium alloys[J]. J. Light Met., 2001, 1: 179
[132] Partridge P G.Cyclic twinning in fatigued close-packed hexagonal metals[J]. Philos. Mag., 1965, 12: 1043
[133] Makar G L, Kruger J, Sieradzki K.Stress corrosion cracking of rapidly solidified magnesium-aluminum alloys[J]. Corros. Sci., 1993, 34: 1311
[134] Zeng R C.Corrosion and corrosion fatigue in deformed magnesium alloys[D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2003(曾荣昌. 变形镁合金的腐蚀及腐蚀疲劳行为研究 [D]. 沈阳: 中国科学院金属研究所, 2003)
[135] Zeng R C, Dietzel W, Zettler R, et al.Microstructural evolution and delayed hydride cracking of FSW-AZ31 magnesium alloy during SSRT[J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 3060
[136] Wang B J, Wang S D, Xu D K, et al.Recent progress in fatigue behavior of Mg alloys in air and aqueous media, A review[J]. J. Mater. Sci. Technol., 2017, 33: 1075
[137] Zeng R C, Han E H, Ke W.Fatigue and corrosion fatigue of magnesium alloys [J]. Mater. Sci. Forum, 2004, 488-489: 721
[138] Zeng R C, Ke W, Han E H.Influence of load frequency and ageing heat treatment on fatigue crack propagation rate of as-extruded AZ61 alloy[J]. Int. J. Fatigue, 2009, 31: 463
[139] Zeng R C, Han E H, Ke W, et al.Corrosion fatigue of as-extruded AM60 magnesium alloy[J]. Chin. J. Mater. Res., 2005, 19: 1(曾荣昌, 韩恩厚, 柯伟等. 挤压镁合金AM60的腐蚀疲劳[J]. 材料研究学报, 2005, 19: 1)
[140] Zeng R C, Han E H, Liu L, et al.Effect of aging on the corrosion fatigue life of AZ80[J]. Chin. J. Mater. Res., 2004, 18: 561(曾荣昌, 韩恩厚, 刘路等. 时效对AZ80腐蚀疲劳寿命的影响[J]. 材料研究学报, 2004, 18: 561)
[141] Ding Z Y, Cui L Y, Chen X B, et al.In vitro corrosion of micro-arc oxidation coating on Mg-1Li-1Ca alloy—The influence of intermetallic compound Mg2Ca[J]. J. Alloys Compd., 2018, 764: 250
[142] Zeng R C, Ke W, Han E H. Effect of temperature and relative humidity on fatigue crack propagation behavior of AZ61 magnesium alloy [J]. Mater. Sci. Forum, 2007, 546-549: 409
[143] Sajuri Z B, Miyashita Y, Mutoh Y.Fatigue characteristics of an extruded AZ61 magnesium alloy[J]. J. Jpn. Inst. Light Met., 2002, 52: 161
[144] Dearnley P A.A brief review of test methodologies for surface-engineered biomedical implant alloys[J]. Surf. Coat. Technol., 2005, 198: 483
[145] Huang W J, Hou B, Pang Y X, et al.Fretting wear behavior of AZ91D and AM60B magnesium alloys[J]. Wear, 2006, 260: 1173
[146] Govender G, Ferreira J H.Erosion corrosion of magnesium AZ91D alloy in the as-cast condition [A]. Proceedings of the Second Israeli International Conference on Magnesium Science & Technology[C]. Magnesium 2000, Dead Sea, Israel, 2000: 371
[147] Chen J, Zeng R C, Huang W J, et al.Characterization and wear resistance of macro-arc oxidation coating on magnesium alloy AZ91 in simulated body fluids[J]. Trans. Nonferrous Met. Soc. China, 2008, 18: 361
[148] Calderón J A, Jiménez J P, Zuleta A A.Improvement of the erosion-corrosion resistance of magnesium by electroless Ni-P/Ni(OH)2-ceramic nanoparticle composite coatings[J]. Surf. Coat. Technol., 2016, 304: 167
[149] Zeng R C, Li X T, Li S Q, et al.In vitro degradation of pure Mg in response to glucose[J]. Sci. Rep., 2015, 5: 13026
[150] Wang Y, Cui L Y, Zeng R C, et al.In vitro degradation of pure magnesium—The effects of glucose and/or amino acid[J]. Materials, 2017, 10: 725
[151] Hornberger H, Witte F, Hort N, et al.Effect of fetal calf serum on the corrosion behaviour of magnesium alloys[J]. Mater. Sci. Eng., 2011, B176: 1746
[152] Liu C L, Wang Y J, Zeng R C, et al.In vitro corrosion degradation behaviour of Mg-Ca alloy in the presence of albumin[J]. Corros. Sci., 2010, 52: 3341
[153] Yang L, Hort N, Willumeit R, et al.Effects of corrosion environment and proteins on magnesium corrosion[J]. Corros. Eng., Sci. Technol., 2012, 47: 335
[154] Wang Y S, Chu S L, Chao V L, et al.In vitro degradation behavior of M1A magnesium alloy in protein-containing simulated body fluid[J]. Mater. Sci. Eng., 2011, C31: 579
[155] Qin H, Zhao Y C, An Z Q, et al.Enhanced antibacterial properties, biocompatibility, and corrosion resistance of degradable Mg-Nd-Zn-Zr alloy[J]. Biomaterials, 2015, 53: 211
[156] Zhang E L, Xu L P, Yu G N, et al.In vivo evaluation of biodegradable magnesium alloy bone implant in the first 6 months implantation[J]. J. Biomed. Mater. Res., 2009, 90A: 882
[157] Wang J L, Witte F, Xi T F, et al.Recommendation for modifying current cytotoxicity testing standards for biodegradable magnesium-based materials[J]. Acta Biomater., 2015, 21: 237
[1] CAO Fengting, WEI Jie, DONG Junhua, KE Wei, WANG Tiegang, FAN Qixiang. Corrosion Inhibition Behavior of 1-Hydroxyethylidene-1, 1-Diphosphonic Acid on 20SiMn Steel in Simulated Concrete Pore Solution Containing Cl-[J]. 金属学报, 2020, 56(6): 898-908.
[2] WEI Jie, WEI Yinghua, LI Jing, ZHAO Hongtao, LV Chenxi, DONG Junhua, KE Wei, HE Xiaoyan. Corrosion Behavior of Damaged Epoxy Coated Steel Bars Under the Coupling Effect of Chloride Ion and Carbonization[J]. 金属学报, 2020, 56(6): 885-897.
[3] CHEN Yongjun, BAI Yan, DONG Chuang, XIE Zhiwen, YAN Feng, WU Di. Passivation Behavior on the Surface of Stainless Steel Reinforced by Quasicrystal-Abrasive via Finite Element Simulation[J]. 金属学报, 2020, 56(6): 909-918.
[4] HUANG Yuan, DU Jinlong, WANG Zumin. Progress in Research on the Alloying of Binary Immiscible Metals[J]. 金属学报, 2020, 56(6): 801-820.
[5] ZHANG Yang, SHAO Jianbo, CHEN Tao, LIU Chuming, CHEN Zhiyong. Deformation Mechanism and Dynamic Recrystallization of Mg-5.6Gd-0.8Zn Alloy During Multi-Directional Forging[J]. 金属学报, 2020, 56(5): 723-735.
[6] ZHAO Yanchun, MAO Xuejing, LI Wensheng, SUN Hao, LI Chunling, ZHAO Pengbiao, KOU Shengzhong, Liaw Peter K.. Microstructure and Corrosion Behavior of Fe-15Mn-5Si-14Cr-0.2C Amorphous Steel[J]. 金属学报, 2020, 56(5): 715-722.
[7] SUN Xinjun,LIU Luojin,LIANG Xiaokai,XU Shuai,YONG Qilong. TiC Precipitation Behavior and Its Effect on Abrasion Resistance of High Titanium Wear-Resistant Steel[J]. 金属学报, 2020, 56(4): 661-672.
[8] YANG Ke,SHI Xianbo,YAN Wei,ZENG Yunpeng,SHAN Yiyin,REN Yi. Novel Cu-Bearing Pipeline Steels: A New Strategy to Improve Resistance to Microbiologically Influenced Corrosion for Pipeline Steels[J]. 金属学报, 2020, 56(4): 385-399.
[9] JIANG Yi,CHENG Manlang,JIANG Haihong,ZHOU Qinglong,JIANG Meixue,JIANG Laizhu,JIANG Yiming. Microstructure and Properties of 08Cr19Mn6Ni3Cu2N (QN1803) High Strength Nitrogen Alloyed LowNickel Austenitic Stainless Steel[J]. 金属学报, 2020, 56(4): 642-652.
[10] LIU Zhenbao,LIANG Jianxiong,SU Jie,WANG Xiaohui,SUN Yongqing,WANG Changjun,YANG Zhiyong. Research and Application Progress in Ultra-HighStrength Stainless Steel[J]. 金属学报, 2020, 56(4): 549-557.
[11] QIAN Yue,SUN Rongrong,ZHANG Wenhuai,YAO Meiyi,ZHANG Jinlong,ZHOU Bangxin,QIU Yunlong,YANG Jian,CHENG Guoguang,DONG Jianxin. Effect of Nb on Microstructure and Corrosion Resistance of Fe22Cr5Al3Mo Alloy[J]. 金属学报, 2020, 56(3): 321-332.
[12] WANG Youde,XU Shanhua,LI Han,ZHANG Haijiang. Surface Characteristics and Stochastic Model of Corroded Structural Steel Under General Atmospheric Environment[J]. 金属学报, 2020, 56(2): 148-160.
[13] CHEN Fang,LI Yadong,YANG Jian,TANG Xiao,LI Yan. Corrosion Behavior of X80 Steel Welded Joint in Simulated Natural Gas Condensate Solutions[J]. 金属学报, 2020, 56(2): 137-147.
[14] WANG Li,DONG Chaofang,ZHANG Dawei,SUN Xiaoguang,Chowwanonthapunya Thee,MAN Cheng,XIAO Kui,LI Xiaogang. Effect of Alloying Elements on Initial Corrosion Behavior of Aluminum Alloy in Bangkok, Thailand[J]. 金属学报, 2020, 56(1): 119-128.
[15] GONG Shengkai, SHANG Yong, ZHANG Ji, GUO Xiping, LIN Junpin, ZHAO Xihong. Application and Research of Typical Intermetallics-Based High Temperature Structural Materials in China[J]. 金属学报, 2019, 55(9): 1067-1076.
No Suggested Reading articles found!