Please wait a minute...
Acta Metall Sin  2008, Vol. 44 Issue (9): 1025-1030     DOI:
Research Articles Current Issue | Archive | Adv Search |
Modeling of nanoscale friction using molecular dynamics simulation
Xiao-Ming Liu;Xiaochuan You;;Zhuo Zhuang
清华大学工程力学系
Cite this article: 

Xiao-Ming Liu; Xiaochuan You; Zhuo Zhuang. Modeling of nanoscale friction using molecular dynamics simulation. Acta Metall Sin, 2008, 44(9): 1025-1030 .

Download:  PDF(1695KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The nano scratch process of a rigid diamond tip into Ni substrate has been studied by using molecular dynamcs simulation with EAM potential. Simulations are carried out to investigate the scratch depth effect on the friction force in the scrath process. Furthermore, microstructures around the tip are strongly depended on the scratch depth and dislocation loops can be formed with enough penetration depth. Also, present study reveals that stick-slip phenomenon results from dislocation emission and phonon dissipation. The sawtooth phenomena can be explained from the point that elastic energy stored in the stick process transforms to the dislocations beneath the tip, and then dissipates in the form of phonons, and finally forms the surface defects. Finally, effect of the sliding velocity is studied, which can be deduced from the simulation. The scratch velocity is the critical factor on the dislocation loop nucleation and evolution process. At the higher velocity, dislocation loop glide along slip lane downward to the bulk material. While at the lower velocity, dislocation loops beneath the tip will reaction with each other, and finnaly a large loop will be formed under the subsurface of the material. Plastic deformation will focus on the subsurface of the bulk material under low scratch velocity.
Key words:  Nanoscale      Friction      Molecular dymamics      Stick-slip mechanism      Dislocation loop      
Received:  24 January 2008     
ZTFLH:  TG146.1  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2008/V44/I9/1025

[1]Johnson K L.Contact Mechanics.New York:Cambridge University Press,1985:5
[2]Ernest R.Friction and Wear of Materials.New York: John Wiley and Sons Inc,1995:65
[3]Guo Y,Zhuang Z,Chen Z,Li X Y.Int J Solids Struct, 2007;44:1180
[4]Binquan L,Robbins M O.Nature,2005;435:929
[5]Hirano M,Shinjo K,Kaneko R,Murata Y.Phys Rev Lett, 1997;78:1448
[6]Martin D,Gertjan S,Namboodiri P,Joost W M,Jennifer A,Henny W.Phys Rev Lett,2004;92:126101
[7]Socoliuc A,Gnecco E,Maier S,Pfeiffer O,Baratoff A, Bennewitz R,Meyer E.Science,2006;313:207
[8]Cannara R J,Brukman M J,Cimatu K,Sumant A U, Baldelli S,Carpick R W.Science,2007;318:780
[9]Persson N J.Sliding Friction.Berlin:Springer,2000:165
[10]Sang Y,Dube M,Grant M.Phys Rev Lett,2001;87: 174301
[11]Ohno K,Nitta T,Nakamura J,Natori A.J Vac Sci Tech- nol,2004;22B:2026
[12]Fusco C,Fasolino A.Phys Rev,2005;71B:045413
[13]Nakamura J,Wakunami S,Naori A.Phys Rev,2005;72B: 235415
[14]Tomlinson G A.Philos Mag,1929;7:905
[15]Komanduri R,Chandrasekaran N,Raft L M.Wear,2000; 242:60
[16]Li J,Van Vliet K J,Zhu T,Yip S,Suresh S.Nature,2002; 418:307
[17]Li Q K,Zhang Y,Chu W Y.Acta Metall Sin,2004;40: 1238 (李启楷,张跃,褚武扬.金属学报,2004;40:1238)
[18]Mulliah D,Kenny S D,Smith R.Phys Rev,2004;69B: 205407
[19]Lee Y,Park J Y,Kim S Y,Jun S,Im S.Mech Mater, 2005;37:1035
[20]Smith R,Mulliah D,Kenn S D,McGee E,Richter A, Gruner M.Wear,2005;259:459
[21]Cho M H,Kim S J,Lim D S,Jang H.Wear,2005;259: 1392
[22]Cheng D,Yan Z J,Yan L.Thin Solid Films,2007;515: 3698
[23]Wang H L,Wang X X,Wang Y,Liang H Y.Acta Metall Sin,2007;43:259 (王海龙,王秀喜,王宇,梁海弋.金属学报,2007;43:259)
[24]Pei Q X,Lu C,Lee H P.Comput Mater Sci,2007;41:177
[25]Li B,Clapp P C,Rifkin J A,Zhang X M.J Appl Phys, 2001;90:3090
[26]Wang H,Hu Y Z,Zou K,Leng Y S.Sci China,2001;31A: 261 (王慧,胡元中,邹鲲,冷永胜.中国科学,2001;31A:261)
[27]Cheng D,Yan Z J,Yan L.Acta Metall Sin,2006;42:1149 (程东,严志军,严立.金属学报,2006;42:1149)
[28]Xu Z M,Huang P.Acta Phys Sin,2007;55:2427 (许中明,黄平.物理学报,2007;55:2427)
[29]Mishin Y,Farkas D,Mehl M J,Papaconstantopoulos D A.Phys Rev,1999;59B:393
[30]Fang T H,Weng C I.Nanotechnology,2000;11:148
[31]Berendsen H J,Postma J P M,van Gunsteren W V,Di Nola A,Haak J R.J Chem Phys,1984;81:3684
[32]Honeycutt J D,Andersen H C.J Phys Chem,1987;91: 4950
[33]Humphrey W,Dalke A,Schulten K.J Mol Graphics,1996; 14:33
[34]Nicola L,Bower A F,Kim K S,Needlemana A,Giessenb E V.J Mech Phys Solids,2007;5:1120
[35]Fivel M C,Robertson C F,Canova G R,Boulanger L. Acta Mater,1998;46:6183
[36]Knap J,Ortiz M.Phys Rev Lett,2003;90:226102
[37]Bulatov V V,Cai W.Computer Simulations of Disloca- tions,London:Oxford University Press,2006:18
[1] FENG Li, WANG Guiping, MA Kai, YANG Weijie, AN Guosheng, LI Wensheng. Microstructure and Properties of AlCo x CrFeNiCu High-Entropy Alloy Coating Synthesized by Cold Spraying Assisted Induction Remelting[J]. 金属学报, 2023, 59(5): 703-712.
[2] MIAO Junwei, WANG Mingliang, ZHANG Aijun, LU Yiping, WANG Tongmin, LI Tingju. Tribological Properties and Wear Mechanism of AlCr1.3TiNi2 Eutectic High-Entropy Alloy at Elevated Temperature[J]. 金属学报, 2023, 59(2): 267-276.
[3] LI Huizhao, WANG Caimei, ZHANG Hua, ZHANG Jianjun, HE Peng, SHAO Minghao, ZHU Xiaoteng, FU Yiqin. Research Progress of Friction Stir Additive Manufacturing Technology[J]. 金属学报, 2023, 59(1): 106-124.
[4] CHEN Guo, WANG Xinbo, ZHANG Renxiao, MA Chengyue, YANG Haifeng, ZHOU Li, ZHAO Yunqiang. Effect of Tool Rotation Speed on Microstructure and Properties of Friction Stir Processed 2507 Duplex Stainless Steel[J]. 金属学报, 2021, 57(6): 725-735.
[5] LI Yanmo, GUO Xiaohui, CHEN Bin, LI Peiyue, GUO Qianying, DING Ran, YU Liming, SU Yu, LI Wenya. Microstructure and Mechanical Properties of Linear Friction Welding Joint of GH4169 Alloy/S31042 Steel[J]. 金属学报, 2021, 57(3): 363-374.
[6] HE Changshu, QIE Mofan, ZHANG Zhiqiang, ZHAO Xiang. Effect of Axial Ultrasonic Vibration on Metal Flow Behavior During Friction Stir Welding[J]. 金属学报, 2021, 57(12): 1614-1626.
[7] LIU Chenxi, MAO Chunliang, CUI Lei, ZHOU Xiaosheng, YU Liming, LIU Yongchang. Recent Progress in Microstructural Control and Solid-State Welding of Reduced Activation Ferritic/Martensitic Steels[J]. 金属学报, 2021, 57(11): 1521-1538.
[8] ZHAO Wanxin, ZHOU Zheng, HUANG Jie, YANG Yange, DU Kaiping, HE Dingyong. Microstructure and Frictional Wear Behavior of FeCrNiMo Alloy Layer Fabricated by Laser Cladding[J]. 金属学报, 2021, 57(10): 1291-1298.
[9] LIU Ming, YAN Fuwen, GAO Chenghui. Effects of Progressive Normal Force on Microscratch Responses of Metallic Materials[J]. 金属学报, 2021, 57(10): 1333-1342.
[10] LIANG Jinjie, GAO Ning, LI Yuhong. Interaction Between Interstitial Dislocation Loop and Micro-Crack in bcc Iron Investigated by Molecular Dynamics Method[J]. 金属学报, 2020, 56(9): 1286-1294.
[11] Suigeng DU,Man GAO,Wanting XU,Xifeng WANG. Study on Interface of Linear Friction Welded Joint Between TC11 and TC17 Titanium Alloy[J]. 金属学报, 2019, 55(7): 885-892.
[12] Mingyu ZHAO,Huijuan ZHEN,Zhihong DONG,Xiuying YANG,Xiao PENG. Preparation and Performance of a Novel Wear-Resistant and High Temperature Oxidation-Resistant NiCrAlSiC Composite Coating[J]. 金属学报, 2019, 55(7): 902-910.
[13] ZHANG Guotao , YIN Yanguo , TONG Baohong , ZHANG Xingquan. Controllable Preparation and Self-Lubricating Mechanism Analysis of Bilayer Porous Iron-Based Powder Metallurgy Materials[J]. 金属学报, 2019, 55(11): 1448-1456.
[14] Chen WANG, Beibei WANG, Peng XUE, Dong WANG, Dingrui NI, Liqing CHEN, Bolü XIAO, Zongyi MA. Fatigue Behavior of Friction Stir Welded SiCp/6092Al Composite[J]. 金属学报, 2019, 55(1): 149-159.
[15] Junsheng WU, Bowei ZHANG, Xiaogang LI, Yizhong HUANG. Corrosion of Nanoscale Metals[J]. 金属学报, 2018, 54(8): 1087-1093.
No Suggested Reading articles found!