Please wait a minute...
Acta Metall Sin  2018, Vol. 54 Issue (8): 1087-1093    DOI: 10.11900/0412.1961.2017.00415
Orginal Article Current Issue | Archive | Adv Search |
Corrosion of Nanoscale Metals
Junsheng WU1, Bowei ZHANG1,2, Xiaogang LI1(), Yizhong HUANG2()
1 Corrosion and Protection Center, Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
2 School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
Cite this article: 

Junsheng WU, Bowei ZHANG, Xiaogang LI, Yizhong HUANG. Corrosion of Nanoscale Metals. Acta Metall Sin, 2018, 54(8): 1087-1093.

Download:  HTML  PDF(3992KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Beneficial from small-size effect, super-high specific surface area and a large amount of defects and dangling bonds on the surface, nanoscale metals exhibit superior chemical activities than traditional bulky counterparts. Nevertheless, it is the high reaction activities of nanoscale metals that in turn make them vulnerable to be oxidized and corroded, which is a main obstacle in their applications. In liquid solutions or liquid-involving multiphase environment, corrosion on nanoscale metals is ubiquitous so that it remains a crucial issue before nanoscale metals are widely employed in real applications. Due to the low-dimension and small-size of nanoscale metals, it is a huge challenge of studying their corrosion behaviors since the experimental and theoretical methods are significantly different from those on bulky metals. In the present paper, recent studies on environmental stability and corrosion behaviors of nanoscale noble metals (Pt, Ag), transition metals (Cu, Ni, Fe), active metals (Al, Mg) and semi-conductor metal (Ge) have been reviewed. Meanwhile, analysis and expectations of theoretical and experimental innovations have also been stated for the further study the corrosion on nanoscale metals.

Key words:  low-dimension      nanoscale metal      oxidation      corrosion      environmental stability     
Received:  30 September 2017     
ZTFLH:  TG146  
Fund: Supported by National Natural Science Foundation of China (Nos.51771027 and 51271031), National Key Research and Development Program of China (No.2017YFB0702100) and Aeronautical Science Foundation of China (No.20165474001)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2017.00415     OR     https://www.ams.org.cn/EN/Y2018/V54/I8/1087

Fig.1  HRTEM images of Cu nanowires before (a) and after (b) 24 h of exposure to air 40%RH, and the film thickness on Cu nanowires versus the exposure time (t) (c) [17]
Fig.2  Schematic evolution of the oxide films on Cu nanowire under the different electrochemical potentials in 0.1 mol/L NaOH solution[17]
Fig.3  TEM images of Ni nanoparticles with different sizes after oxidation in air at high temperature[19]
(a) 9 nm (b) 26 nm (c) 96 nm
Fig.4  HRTEM images of the nickel nanoneedle specimen after electrochemical oxidation in 0.1 mol/L H2SO4 solution (a) and 0.1 mol/L NaOH solution (b), respectively[20]
[1] Sau T K, Rogach A L, Jackel F, et al.Properties and applications of colloidal nonspherical noble metal nanoparticles[J]. Adv. Mater., 2010, 22: 1805
[2] Ferrando R, Jellinek J, Johnston R L.Nanoalloys: From theory to applications of alloy clusters and nanoparticles[J]. Chem. Rev., 2008, 108: 845
[3] Rosei F.Nanostructured surfaces: Challenges and frontiers in nanotechnology[J]. J. Phys.: Condensed Matter, 2004, 16: S1373
[4] Dreizin E L.Metal-based reactive nanomaterials[J]. Prog. Energ. Combust. Sci., 2009, 35: 141
[5] Wang Q L, Lee S, Choi H.Aging study on the structure of Fe0-nanoparticles: Stabilization, characterization, and reactivity[J]. J. Phys. Chem., 2010, 114C: 2027
[6] Perez-Alonso F J, Elkj?r C F, Shim S S, et al. Identical locations transmission electron microscopy study of Pt/C electrocatalyst degradation during oxygen reduction reaction[J]. J. Power Sour., 2011, 196: 6085
[7] Cherevko S, Kulyk N, Mayrhofer K J J. Durability of platinum-based fuel cell electrocatalysts: Dissolution of bulk and nanoscale platinum[J]. Nano Energy, 2016, 29: 275
[8] Tang L, Han B C, Persson K, et al.Electrochemical stability of nanometer-scale Pt particles in acidic environments[J]. J. Am. Chem. Soc., 2010, 132: 596
[9] Tang L, Li X Q, Cammarata R C, et al.Electrochemical stability of elemental metal nanoparticles[J]. J. Am. Chem. Soc., 2010, 132: 1722
[10] Jinnouchi R, Suzuki K K T, Morimoto Y. DFT calculations on electro-oxidations and dissolutions of Pt and Pt-Au nanoparticles[J]. Catal. Today, 2016, 262: 100
[11] Ivanova O S, Zamborini F P.Size-dependent electrochemical oxidation of silver nanoparticles[J]. J. Am. Chem. Soc., 2010, 132: 70
[12] Liu Y, Lopes P P, Cha W, et al.Stability limits and defect dynamics in Ag nanoparticles probed by Bragg coherent diffractive imaging[J]. Nano Lett., 2017, 17: 1595
[13] Keast V J, Myles T A, Shahcheraghi N, et al.Corrosion processes of triangular silver nanoparticles compared to bulk silver[J]. J. Nanopart. Res., 2016, 18: 45
[14] Elechiguerra J L, Larios-Lopez L, Liu C, et al.Corrosion at the nanoscale: The case of silver nanowires and nanoparticles[J]. Chem. Mater., 2005, 17: 6042
[15] Taylor C D, Neurock M, Scully J R.First-principles investigation of the fundamental corrosion properties of a model Cu(38) nanoparticle and the (111), (113) surfaces[J]. J. Electrochem. Soc., 2008, 155: C407
[16] Xia X P, Xie C S, Cai S Z, et al.Corrosion characteristics of copper microparticles and copper nanoparticles in distilled water[J]. Corros. Sci., 2006, 48: 3924
[17] Zhang B W, Chen B S, Wu J S, et al.The electrochemical response of single crystalline copper nanowires to atmospheric air and aqueous solution[J]. Small, 2017, 13: 1603411
[18] D'Addato S, Grillo V, Altieri S, et al. Structure and stability of nickel/nickel oxide core-shell nanoparticles[J]. J. Phys.: Condensed Matter, 2011, 23: 175003
[19] Railsback J G, Johnston-Peck A C, Wang J W, et al. Size-dependent nanoscale Kirkendall effect during the oxidation of nickel nanoparticles[J]. ACS Nano, 2010, 4: 1913
[20] Zhang B W, Wu J S, Li X G, et al.Passivation of nickel nanoneedles in aqueous solutions[J]. J. Phys. Chem. , 2014, 118C: 9073
[21] Sarathy V, Tratnyek P G, Nurmi J T, et al.Aging of iron nanoparticles in aqueous solution: Effects on structure and reactivity[J]. J. Phys. Chem., 2008, 112C: 2286
[22] Reardon E J, Fagan R, Vogan J L, et al.Anaerobic corrosion reaction kinetics of nanosized iron[J]. Environ. Sci. Technol., 2008, 42: 2420
[23] Liu A R, Liu J, Han J H, et al.Evolution of nanoscale zero-valent iron (nZVI) in water: Microscopicand spectroscopic evidence on the formation of nano- andmicro-structured iron oxides[J]. J. Hazard. Mater., 2017, 322: 129
[24] Pullin H, Springell R, Parry S, et al.The effect of aqueous corrosion on the structure and reactivity of zero-valent iron nanoparticles[J]. Chem. Eng. J., 2017, 308: 568
[25] Hedberg Y S, Pradhan S, Cappellini F, et al.Electrochemical surface oxide characteristics of metal nanoparticles (Mn, Cu and Al) and the relation to toxicity[J]. Electrochim. Acta, 2016, 212: 360
[26] Gromov A A, Strokova Y I, Teipel U.Stabilization of metal nanoparticles—A chemical approach[J]. Chem. Eng. Technol., 2009, 32: 1049
[27] Lei J P, Huang H, Dong X L, et al.Oxidation and corrosion behaviors of Mg-based nanoparticles[J]. J. Nanosci. Nanotechnol., 2009, 9: 7503
[28] Hanrath T, Korgel B A.Chemical surface passivation of Ge nanowires[J]. J. Am. Chem. Soc., 2004, 126: 15466
[29] Holmberg V C, Korgel B A.Corrosion resistance of thiol-and alkene-passivated germanium nanowires[J]. Chem. Mater., 2010, 22: 3698
[1] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[2] LI Xiaohan, CAO Gongwang, GUO Mingxiao, PENG Yunchao, MA Kaijun, WANG Zhenyao. Initial Corrosion Behavior of Carbon Steel Q235, Pipeline Steel L415, and Pressure Vessel Steel 16MnNi Under High Humidity and High Irradiation Coastal-Industrial Atmosphere in Zhanjiang[J]. 金属学报, 2023, 59(7): 884-892.
[3] CHEN Runnong, LI Zhaodong, CAO Yanguang, ZHANG Qifu, LI Xiaogang. Initial Corrosion Behavior and Local Corrosion Origin of 9%Cr Alloy Steel in ClContaining Environment[J]. 金属学报, 2023, 59(7): 926-938.
[4] ZHAO Pingping, SONG Yingwei, DONG Kaihui, HAN En-Hou. Synergistic Effect Mechanism of Different Ions on the Electrochemical Corrosion Behavior of TC4 Titanium Alloy[J]. 金属学报, 2023, 59(7): 939-946.
[5] ZHANG Qiliang, WANG Yuchao, LI Guangda, LI Xianjun, HUANG Yi, XU Yunze. Erosion-Corrosion Performance of EH36 Steel Under Sand Impacts of Different Particle Sizes[J]. 金属学报, 2023, 59(7): 893-904.
[6] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[7] HUANG Ding, QIAO Yanxin, YANG Lanlan, WANG Jinlong, CHEN Minghui, ZHU Shenglong, WANG Fuhui. Effect of Shot Peening of Substrate Surface on Cyclic Oxidation Behavior of Sputtered Nanocrystalline Coating[J]. 金属学报, 2023, 59(5): 668-678.
[8] WANG Jingyang, SUN Luchao, LUO Yixiu, TIAN Zhilin, REN Xiaomin, ZHANG Jie. Rare Earth Silicate Environmental Barrier Coating Material: High-Entropy Design and Resistance to CMAS Corrosion[J]. 金属学报, 2023, 59(4): 523-536.
[9] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[10] HAN En-Hou, WANG Jianqiu. Effect of Surface State on Corrosion and Stress Corrosion for Nuclear Materials[J]. 金属学报, 2023, 59(4): 513-522.
[11] XU Linjie, LIU Hui, REN Ling, YANG Ke. Effect of Cu on In-Stent Restenosis and Corrosion Resistance of Ni-Ti Alloy[J]. 金属学报, 2023, 59(4): 577-584.
[12] LIU Laidi, DING Biao, REN Weili, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Multilayer Structure of DZ445 Ni-Based Superalloy Formed by Long Time Oxidation at High Temperature[J]. 金属学报, 2023, 59(3): 387-398.
[13] SHEN Zhao, WANG Zhipeng, HU Bo, LI Dejiang, ZENG Xiaoqin, DING Wenjiang. Research Progress on the Mechanisms Controlling High-Temperature Oxidation Resistance of Mg Alloys[J]. 金属学报, 2023, 59(3): 371-386.
[14] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
[15] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
No Suggested Reading articles found!