Please wait a minute...
Acta Metall Sin  2008, Vol. 44 Issue (3): 302-306     DOI:
Research Articles Current Issue | Archive | Adv Search |
High magnetic field treatment on variants and magnetostrain in ferromagnetic shape memory alloy Ni50Mn28.5Ga21.5 single crystal
Cite this article: 

. High magnetic field treatment on variants and magnetostrain in ferromagnetic shape memory alloy Ni50Mn28.5Ga21.5 single crystal. Acta Metall Sin, 2008, 44(3): 302-306 .

Download:  PDF(964KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The giant magnetostrain of NiMnGa alloys have been gained only in the single crystals with a single variant structure. Uniaxial compression treatments were used generally to get the single variant. But the method could not treat the samples with large length-diameter radios by reason of causing bend deformation. In this paper, high magnetic field treatment on the NiMnGa single crystals to gain a single variant is reported. Ni50Mn28.5Ga21.5 single crystal with size of Ф7×38.9 mm was prepared by optical floating zone-melting method. The single crystal was magnetized repeatedly in a 10T pulsed magnetic field for martensite variants treatment, and a near single variant with 5.2% giant magnetostrain was obtained. The pressure effect on the magnetostrain was investigated, and the results showed that with the compression stress increasing, the critical magnetic field for the magnetostrain jump was increased and the saturated magnetostrain was decreased.
Key words:  ferromagnetic shape memory alloy      NiMnGa      single crystal      magnetostrain      pressure effect      
Received:  27 August 2007     
ZTFLH:  TG139.6  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2008/V44/I3/302

[1]Ullakko K,Huang J K,Kantner C.Appl Phys Lett,1996; 69:1966
[2]Ullakko K,Huang J K,Kokorin V V,O'Handley R C.Scr Mater,1997;36:1133
[3]Murray S J,Marioni M,Allen S M,O'Handley R C,Lo- grasso T A.Appl Phys Lett,2000;77:886
[4]Wang W H,Wu G H,Chen J L,Gao S X,Zhan W S.Appl Phys Lett,2001;79:1148
[5]Sozinov A,Likhachev A A,Lanska N,Ullakko K.Appl Phys Lett,2002;80:1746
[6]Jiang B H,Zhou W M,Liu Y,Qi X.Mater Sci Forum, 2003;426-432:2285
[7]Gao Z Y,Cai W,Zhao L C,Wu G H,Chen J L,Zhan W S.Trans Nonferrous Met Soc Chin,2003;13:42
[8]Murray S J,O'Handley R C,Allen S M.J Appl Phys, 2001;89:1295
[9]O'Handley R C.J Appl Phys,1998;83:3263
[10]Deng L F,Li Y,Jiang C B,Xu H B.Acta Metall Sin, 2004;40:1290 (邓丽芬,李岩,蒋成保,徐惠彬.金属学报,2004;40:1290)
[11]Wang J M,Jiang C B,Xu H B.Mater Sci Forum,2005; 475-479:2013
[12]Jiang C B,Muhammad Y,Deng L F,Wu W,Xu H B. Acta Mater,2004;52:2779
[13]Ma Y Q,Jiang C B,LiY,Xu H B,Wang C P,Liu X J. Acta Mater,2007;55:1533
[1] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[2] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[4] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[5] WANG Di, HE Lili, WANG Dong, WANG Li, ZHANG Siqian, DONG Jiasheng, CHEN Lijia, ZHANG Jian. Influence of Pt-Al Coating on Tensile Properties of DD413 Alloy at High Temperatures[J]. 金属学报, 2023, 59(3): 424-434.
[6] ZHANG Zixuan, YU Jinjiang, LIU Jinlai. Anisotropy of Stress Rupture Property of Ni Base Single Crystal Superalloy DD432[J]. 金属学报, 2023, 59(12): 1559-1567.
[7] ZHANG Shaohua, XIE Guang, DONG Jiasheng, LOU Langhong. Investigation on Eutectic Dissolution Behavior of Single Crystal Superalloy by Differential Scanning Calorimetry[J]. 金属学报, 2021, 57(12): 1559-1566.
[8] MA Dexin, ZHAO Yunxing, XU Weitai, PI Libo, LI Zhongxing. Surface Effect on Eutectic Structure Distribution in Single Crystal Superalloy Castings[J]. 金属学报, 2021, 57(12): 1539-1548.
[9] HE Siliang, ZHAO Yunsong, LU Fan, ZHANG Jian, LI Longfei, FENG Qiang. Effects of Hot Isostatic Pressure on Microdefects and Stress Rupture Life of Second-Generation Nickel-Based Single Crystal Superalloy in As-Cast and As-Solid-Solution States[J]. 金属学报, 2020, 56(9): 1195-1205.
[10] LIU Jinlai, YE Lihua, ZHOU Yizhou, LI Jinguo, SUN Xiaofeng. Anisotropy of Elasticity of a Ni Base Single Crystal Superalloy[J]. 金属学报, 2020, 56(6): 855-862.
[11] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Nanopores on Tensile Properties of Single Crystal/Polycrystalline Nickel Composites[J]. 金属学报, 2020, 56(5): 776-784.
[12] MA Dexin,WANG Fu,XU Weitai,XU Wenliang,ZHAO Yunxing. Formation of Sliver Defects in Single CrystalCastings of Superalloys[J]. 金属学报, 2020, 56(3): 301-310.
[13] ZHAO Xu,SUN Yuan,HOU Xingyu,ZHANG Hongyu,ZHOU Yizhou,DING Yutian. Effect of Orientation Deviation on Microstructure and Mechanical Properties of Nickel-Based Single Crystal Superalloy Brazing Joints[J]. 金属学报, 2020, 56(2): 171-181.
[14] ZHANG Jian,WANG Li,WANG Dong,XIE Guang,LU Yuzhang,SHEN Jian,LOU Langhong. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2019, 55(9): 1077-1094.
[15] HU Bin,LI Shusuo,PEI Yanling,GONG Shengkai,XU Huibin. Influence of Small Misorientation from <111> on Creep Properties of a Ni-Based Single Crystal Superalloy[J]. 金属学报, 2019, 55(9): 1204-1210.
No Suggested Reading articles found!