Please wait a minute...
Acta Metall Sin  2020, Vol. 56 Issue (2): 171-181    DOI: 10.11900/0412.1961.2019.00258
Current Issue | Archive | Adv Search |
Effect of Orientation Deviation on Microstructure and Mechanical Properties of Nickel-Based Single Crystal Superalloy Brazing Joints
ZHAO Xu1,2,SUN Yuan2(),HOU Xingyu2,ZHANG Hongyu2,ZHOU Yizhou1,2(),DING Yutian1
1. State Key Laboratory of Advanced and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
2. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Download:  HTML  PDF(38062KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Ni-based single crystal superalloy has excellent high temperature properties, which is the main materials for aero-engine turbine blade. In order to improve the yield strength of single crystal blades, the reliable bonding technology has become an increasingly indispensable key technology in the process of producing single crystal blades. However, there is inevitably an orientation deviation in the bonded single crystal component, owing to its shape complexity and randomness during assembly in the practice of bonding single crystal components. The CMSX-4 single crystal superalloy with the orientation combination of 0°+0°, 0°+45° and 0°+90° were brazed by Ni-based filler alloy at 1210 ℃ for 30 min and carried out ageing heat treatment. The effect of base material orientation combination on the microstructure was analyzed by SEM, EBSD and EPMA. The mechanical properties of joints after bonding and ageing treatment were tested. The result indicates that the microstructures and phase compositions of three orientation combination joints were similar in the filler alloy zone, consisting of γ-Ni, γ′, γ+γ′ eutectic, M3B2 type boride, CrB, nickel-silicon compound and γ-Ni+Ni3B+CrB ternary eutectic phase. The melting point depressant B in the filler alloy is not diffused significantly to the base material, and no brittle compound phase is precipitated in the diffusion affected zone of the joint. After ageing treatment, elements diffusion is uniform and brittle precipitates are reduced, and the continuous grain boundary can be observed at the center of the joint when the base material on both sides of the joint has orientation deviation. The testing results of mechanical properties show that the base material orientation deviation has no distinctly effect on the room and high temperature tensile properties of the joint. However, the tensile strengths of the joint at room and high temperature both reduce with orientation deviation after ageing treatment, but the degree of orientation deviation has no obvious influence on the tensile strength of the joint. The fracture of the three joints occurs in the filler alloy zone.

Key words:  single crystal superalloy      orientation deviation      nickel-based filler alloy      brazing     
Received:  31 July 2019     
ZTFLH:  TG454  
Fund: National Youth Science Fund Project of China(51801206)
Corresponding Authors:  Yuan SUN,Yizhou ZHOU     E-mail:  yuansun@imr.ac.cn;yzzhou@imr.ac.cn

Cite this article: 

ZHAO Xu,SUN Yuan,HOU Xingyu,ZHANG Hongyu,ZHOU Yizhou,DING Yutian. Effect of Orientation Deviation on Microstructure and Mechanical Properties of Nickel-Based Single Crystal Superalloy Brazing Joints. Acta Metall Sin, 2020, 56(2): 171-181.

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2019.00258     OR     https://www.ams.org.cn/EN/Y2020/V56/I2/171

MaterialCoCrWMoAlTiSiBReNi
CMSX-49.3~10.08.56.0~6.60.5~0.75.4~5.70.9~1.1--2.8~3.0Bal.
JSSNi60A5.0~10.06.0~12.02.0~6.02.0~5.02.0~5.00.5~3.00.2~4.00.2~2.0-Bal.
Table 1  Compositions of CMSX-4 single crystal superalloy and JSSNi60A Ni-based braze alloy (mass fraction / %)
Fig.1  Schematic of specimen for brazed bonding (The axial direction of the specimen 1 is parallel to [001] and specimen 2 is deviated from [001] by θ angle; θ=0°, 45° and 90°, respectively)
Fig.2  Dimension diagram of tensile specimen (unit: mm)
Fig.3  SEM images of 0°+0° orientation combination single crystal superalloy brazed joint(a) integrated joint (b) diffusion aftected zone (I) (c) interface bonding zone (II) (d) filler alloy zone (III)
ZoneNiCrCoWMoAlTiTaNbSiB
62.810.612.43.2-5.40.92.32.10.3-
63.212.510.23.5-4.31.30.82.20.51.5
Table 2  Compositions of the 0°+0° orientation combination single crystal superalloy brazed joint in Fig.3 (atomic fraction / %)
Fig.4  Back scattered electron (BSE) images of each phase in filler alloy zone(a) γ-Ni, γ', γ+γ' eutectic, M3B2 and CrB boride (b) Ni-Si compound and γ-Ni+Ni3B+CrB ternary eutectic phase
PhaseNiCrCoWMoAlTiTaNbSiB
M3B224.213.56.315.24.6-0.71.30.7-32.8
CrB5.939.64.57.88.3-1.61.61.8-28.9
γ-Ni60.312.110.43.2-7.41.41.62.70.9-
γ′66.44.38.31.40.86.74.51.42.04.2-
γ+γ′61.79.89.41.8-9.42.81.70.62.8-
M3Si50.71.67.2---0.9-14.822.52.3
γ-Ni+Ni3B+CrB52.98.48.84.31.72.15.2-1.32.412.9
Table 3  Compositions of each phase in filler alloy zone in Fig.4 (atomic fraction / %)
Fig.5  SEM images of three orientation deviation single crystal superalloy brazed joints(a) 0°+0° (b) 0°+45° (c) 0°+90°
Fig.6  SEM (a~c) and EBSD (d~f) images of three orientation deviation single crystal superalloy brazed joints(a, d) 0°+0° (b, e) 0°+45° (c, f) 0°+90°
Fig.7  SEM images of three orientation deviation single crystal superalloy brazed joints before (a~c) and after (d~f) heat treatment(a, d) 0°+0° (b, e) 0°+45° (c, f) 0°+90°
Fig.8  SEM (a~c) and EBSD (d~f) images of three orientation deviation single crystal superalloy brazed joints after heat treatment(a, d) 0°+0° (b, e) 0°+45° (c, f) 0°+90°
Fig.9  Schematics of formation mechanism and heat treatment process of brazed joint with orientation deviation(a) heating (b) holding (c) brazing joint (d) heat treatment joint
Fig.10  Tensile strengths of three orientation deviation single crystal superalloy brazed joints at room temperature
Fig.11  Longitudinal section OM images of tensile fracture path of three orientation deviation single crystal superalloy brazed joints (a~c) and heat treatment joints (d~f) at room temperature(a, d) 0°+0° (b, e) 0°+45° (c, f) 0°+90°
Fig.12  Tensile strengths of three orientation deviation single crystal superalloy brazed joints at high temperature (980 ℃)
Fig.13  Longitudinal section OM images of tensile fracture path of three orientation deviation single crystal superalloy brazed joints (a~c) and heat treatment joints (d~f) at high temperature (980 ℃)(a, d) 0°+0° (b, e) 0°+45° (c, f) 0°+90°
[1] Hu Z Q, Liu L R, Jin T, et al. Development of the Ni-base single crystal superalloys [J]. Aeroengine, 2005, 31(3): 1
[1] (胡壮麒, 刘丽荣, 金 涛等. 镍基单晶高温合金的发展 [J]. 航空发动机, 2005, 31(3): 1)
[2] Sun X F, Jin T, Zhou Y Z, et al. Research progress of nickel-base single crystal superalloys [J]. Mater. China, 2012, 31(12): 1
[2] (孙晓峰, 金 涛, 周亦胄等. 镍基单晶高温合金研究进展 [J]. 中国材料进展, 2012, 31(12): 1)
[3] Li W, Jin T, Hu Z Q. Microstructure characteristics and crystallographic orientation of transient liquid phase joint of Ni-based single crystal superalloy [J]. Acta Metall. Sin., 2008, 44: 1474
[3] (李 文, 金 涛, 胡壮麒. 镍基单晶高温合金瞬态液相连接接头的微观结构和结晶学取向 [J]. 金属学报, 2008, 44: 1474)
[4] Ma D X. Development of single crystal solidification technology for production of superalloy turbine blades [J]. Acta Metall. Sin., 2015, 51: 1179
[4] (马德新. 高温合金叶片单晶凝固技术的新发展 [J]. 金属学报, 2015, 51: 1179)
[5] Zhang X L, Zhou Y Z, Jin T, et al. Study on the tendency of stray grain formation of Ni-based single crystal superalloys [J]. Acta Metall. Sin., 2012, 48: 1299
[5] (张小丽, 周亦胄, 金 涛等. 镍基单晶高温合金杂晶形成倾向性的研究 [J]. 金属学报, 2012, 48: 1229)
[6] Zhong M L, Sun H Q, Liu W J, et al. Boundary liquation and interface cracking characterization in laser deposition of Inconel 738 on directionally solidified Ni-based superalloy [J]. Scr. Mater., 2005, 53: 159
[7] Li X Q, Cheng Z, Qiu H, et al. Research progress in repair welding technology of Ni-based superalloy [J]. Mater. Rev., 2017, 31(S1): 541
[7] (李小强, 程 准, 邱 昊等. 镍基高温合金焊接修复技术的研究进展 [J]. 材料导报, 2017, 31(S1): 541)
[8] Lang B, Hou J B, Guo D L, et al. Transient liquid phase (TLP) diffusion bonded single crystal superalloy [J]. Trans. China Weld. Inst., 2015, 36(12): 93
[8] (郎 波, 侯金保, 郭德伦等. 单晶高温合金的过渡液相扩散焊 [J]. 焊接学报, 2015, 36(12): 93)
[9] Li W, Jin T, Sun X F, et al. TLP bonding of Ni-base single crystal superalloy [J]. Acta Metall. Sin., 2001, 37: 1165
[9] (李 文, 金 涛, 孙晓峰等. 镍基单晶高温合金TLP连接 [J]. 金属学报, 2001, 37: 1165)
[10] Yu Z R, Ding X F, Cao L M, et al. Transient liquid phase bonding of second and third gerneration Ni-based single crystal superalloy with Hf-containing interlayer alloy [J]. Acta Metall. Sin., 2016, 52: 549
[10] (郁峥嵘, 丁贤飞, 曹腊梅等. 第二、三代镍基单晶高温合金含Hf过渡液相连接 [J]. 金属学报, 2016, 52: 549)
[11] Li X H, Zhong Q P, Cao C X, et al. Microstructures and properties of DD3 single crystal alloy joints with different orientation [J]. J. Mater. Eng., 2001, (12): 1
[11] (李晓红, 钟群鹏, 曹春晓等. 不同取向DD3单晶合金扩散连接接头组织及性能 [J]. 材料工程, 2011, (12): 1)
[12] Mao W, Li X H, Zhou Y, et al. Effect of crystal orientation matching on stress-rupture property of DD6 single crystal joint [J]. Trans. China Weld. Inst., 2011, 32(4): 91
[12] (毛 唯, 李晓红, 周 媛等. 取向匹配性对DD6单晶接头持久性能的影响 [J]. 焊接学报, 2011, 32(4): 91)
[13] Chai L, Huang J H, Wang L, et al. Microstructure and fracture mechanism of N5 single crystal TLP joint with misorientation [J]. Aeronaut. Manuf. Technol., 2015, (3): 64
[13] (柴 禄, 黄继华, 王 立等. N5单晶含取向差TLP接头显微组织与断裂机理 [J]. 航空制造技术, 2015, (3): 64)
[14] Sheng N C, Liu J D, Jin T, et al. Transient liquid phase bonding single-crystal superalloys with orientation deviations: Creep properties [J]. Metall. Mater. Trans., 2015, 46A: 5772
[15] Sheng N C, Li B, Liu J D, et al. Influence of the substrate orientation on the isothermal solidification during TLP bonding single crystal superalloys [J]. J. Mater. Sci. Technol., 2014, 30: 213
[16] Li W, Jin T, Sun X F, et al. TLP bonding of Ni-base single crystal superalloy [J]. Acta Metall. Sin., 2001, 37: 1165
[16] (李 文, 金 涛, 孙晓峰等. 镍基单晶高温合金TLP连接 [J]. 金属学报, 2001, 37: 1165)
[17] Liu A N. Research of transient liquid phase diffusion bonding of DD6 single crystal superalloy and the microstructure forming regularity of binding joint [D]. Xi'an: Xi'an University of Technology, 2014
[17] (刘安娜. DD6单晶高温合金TLP焊及接头组织形成规律研究 [D]. 西安: 西安理工大学, 2014)
[18] Zhuang H S, Lugscheider E. High Temperature Brazing [M]. Beijing: National Defence Industry Press, 1989: 46
[18] (庄鸿寿, Lugscheider E. 高温钎焊 [M]. 北京: 国防工业出版社, 1989: 46)
[19] Gao K. Research on microstructure and properties of the DD98M single crystal superalloy joints brazed with Pd-Si composite filler [D]. Hangzhou: Zhejiang University of Technology, 2017
[19] (高 科. 采用Pd-Si复合钎料钎焊DD98M单晶高温合金的接头组织和性能研究 [D]. 杭州: 浙江工业大学, 2017)
[20] Sun Y, Liu J D, Hou X Y, et al. Microstructure evolution and interfacial formation mechanism of wide gap brazing of DD5 single crystal superalloy [J]. Acta Metall. Sin., 2016, 52: 875
[20] (孙 元, 刘纪德, 侯星宇等. DD5单晶高温合金大间隙钎焊的组织演变与界面形成机制 [J]. 金属学报, 2016, 52: 875)
[21] Sun Y, Hou X Y, Jin T, et al. Microstructure and mechanical properties of DD5 single crystal superalloy brazing joint [J]. Trans. China Weld. Inst., 2017, 38(1): 117
[21] (孙 元, 侯星宇, 金 涛等. DD5单晶高温合金钎焊接头的微观组织和力学性能分析 [J]. 焊接学报, 2017, 38(1): 117)
[22] Hou X Y, Sun Y. Effect of brazing temperature on microstructure and mechanical properties of CMSX-4 single crystal superalloy brazed joint [J]. Weld. Joining, 2019, (1): 40
[22] (侯星宇, 孙 元. 钎焊温度对CMSX-4单晶高温合金接头组织与性能的影响 [J]. 焊接, 2019, (1): 40)
[23] Sun Y, Liu J D, Liu Z M, et al. Microstructure evolution and mechanical properties of DD5 single crystal superalloy joint brazed by Co-based filler alloy [J]. Acta Metall. Sin., 2013, 49: 1581
[23] (孙 元, 刘纪德, 刘忠明等. 钻基钎料钎焊DD5单晶高温合金的接头微观组织演变与力学性能研究 [J]. 金属学报, 2013, 49: 1581)
[24] Li X H. Brazing and diffusion bonding of advanced high-temperature structural materials for aeronautical application [J]. Weld. Joining, 2008, (11): 9
[24] (李晓红. 先进航空高温结构材料的钎焊与扩散焊技术 [J]. 焊接, 2008, (11): 9)
[25] Sun Y, Liu J, Li B, et al. Microstructure evolution of single crystal superalloy DD5 joints brazed using AWS BNi-2 filler alloy [J]. Mater. Res. Innovat., 2014, 18(suppl).4: 341
[26] Wang G L, Sun Y, Wang X G, et al. Microstructure evolution and mechanical behavior of Ni-based single crystal superalloy joint brazed with mixed powder at elevated temperature [J]. J. Mater. Sci. Technol., 2017, 33: 1219
[27] Pouranvari M, Ekrami A, Kokabi A H. Solidification and solid state phenomena during TLP bonding of IN718 superalloy using Ni-Si-B ternary filler alloy [J]. J. Alloys Compd., 2013, 563: 143
[28] Zhou Y, Mao W, Li X H. Microstructure and mechanical properties of single crystal superalloy DD6 joint brazed with BNi82CrSiB filler metal [J]. J. Mater. Eng., 2007, (5): 3
[28] (周 媛, 毛 唯, 李晓红. BNi82CrSiB钎料钎焊DD6单晶合金接头组织及力学性能研究 [J]. 材料工程, 2007, (5): 3)
[29] Pouranvari M, Ekrami A, Kokabi A H. Effect of bonding temperature on microstructure development during TLP bonding of a nickel base superalloy [J]. J. Alloys Compd., 2009, 469: 270
[30] Pouranvari M, Ekrami A, Kokabi A H. Microstructure-properties relationship of TLP-bonded GTD-111 nickel-base superalloy [J]. Mater. Sci. Eng., 2008, A490: 229
[1] LIU Jinlai, YE Lihua, ZHOU Yizhou, LI Jinguo, SUN Xiaofeng. Anisotropy of Elasticity of a Ni Base Single Crystal Superalloy[J]. 金属学报, 2020, 56(6): 855-862.
[2] ZHANG Jian,WANG Li,WANG Dong,XIE Guang,LU Yuzhang,SHEN Jian,LOU Langhong. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2019, 55(9): 1077-1094.
[3] HU Bin,LI Shusuo,PEI Yanling,GONG Shengkai,XU Huibin. Influence of Small Misorientation from <111> on Creep Properties of a Ni-Based Single Crystal Superalloy[J]. 金属学报, 2019, 55(9): 1204-1210.
[4] LI Jiarong,XIE Hongji,HAN Mei,LIU Shizhong. High Cycle Fatigue Behavior of Second Generation Single Crystal Superalloy[J]. 金属学报, 2019, 55(9): 1195-1203.
[5] Jinyao MA,Jin WANG,Yunsong ZHAO,Jian ZHANG,Yuefei ZHANG,Jixue LI,Ze ZHANG. Investigation of In Situ 1150 High Temperature Deformation Behavior and Fracture Mechanism of a Second Generation Single Crystal Superalloy[J]. 金属学报, 2019, 55(8): 987-996.
[6] Dejian SUN,Lin LIU,Taiwen HUANG,Jiachen ZHANG,Kaili CAO,Jun ZHANG,Haijun SU,Hengzhi FU. Dendrite Growth and Orientation Evolution in the Platform of Simplified Turbine Blade for Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2019, 55(5): 619-626.
[7] Shuangjie CHU,Yongjie YANG,Zhenghua HE,Yuhui SHA,Liang ZUO. Calculation of Magnetostriction Coefficient for Laser-Scribed Grain-Oriented Silicon Steel Based onMagnetic Domain Interaction[J]. 金属学报, 2019, 55(3): 362-368.
[8] XIE Guang, ZHANG Shaohua, ZHENG Wei, ZHANG Gong, SHEN Jian, LU Yuzhang, HAO Hongquan, WANG Li, LOU Langhong, ZHANG Jian. Formation and Evolution of Low Angle Grain Boundary in Large-Scale Single Crystal Superalloy Blade[J]. 金属学报, 2019, 55(12): 1527-1536.
[9] HUANG Taiwen,LU Jing,XU Yao,WANG Dong,ZHANG Jian,ZHANG Jiachen,ZHANG Jun,LIU Lin. Effects of Rhenium and Tantalum on Microstructural Stability of Hot-Corrosion Resistant Single Crystal Superalloys Aged at 900 ℃[J]. 金属学报, 2019, 55(11): 1427-1436.
[10] WANG Li,HE Yufeng,SHEN Jian,ZHENG Wei,LOU Langhong,ZHANG Jian. Effect of Secondary Orientation on Oxidation Anisotropy Around the Holes of Single Crystal Superalloy During Thermal Fatigue Tests[J]. 金属学报, 2019, 55(11): 1417-1426.
[11] Xiaoyi ZHANG, Hailong SHANG, Bingyang MA, Rongbin LI, Geyang LI. Brazing of Coated Al Foil Filler to AlN Ceramic[J]. 金属学报, 2018, 54(4): 575-580.
[12] Jing GUO, Jinguo LI, Jide LIU, Ju HUANG, Xiangbin MENG, Xiaofeng SUN. Formation Mechanism of Fusion Zone in Growth of Single Crystal Superalloy with Low-Segregated Heterogeneous Seed[J]. 金属学报, 2018, 54(3): 419-427.
[13] Chenglin LIU, Haijun SU, Jun ZHANG, Taiwen HUANG, Lin LIU, Hengzhi FU. Effect of Electromagnetic Field on Microstructure ofNi-Based Single Crystal Superalloys[J]. 金属学报, 2018, 54(10): 1428-1434.
[14] Likui NING,Jian TONG,Enze LIU,Zheng TAN,Huisi JI,Zhi ZHENG. Effect of Ru on the Solidification Microstructure of a Ni-Based Single Crystal Superalloy with High Cr Content[J]. 金属学报, 2017, 53(4): 423-432.
[15] Bo WANG,Jun ZHANG,Xuejiao PAN,Taiwen HUANG,Lin LIU,Hengzhi FU. Effects of W on Microstructural Stability of the Third Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2017, 53(3): 298-306.
No Suggested Reading articles found!