Please wait a minute...
Acta Metall Sin  2008, Vol. 44 Issue (2): 139-144     DOI:
Research Articles Current Issue | Archive | Adv Search |
Study of microstructure and texture of as-cold-rolled Ni47Ti44Nb9 shape memory alloy tube
东北大学
Cite this article: 

. Study of microstructure and texture of as-cold-rolled Ni47Ti44Nb9 shape memory alloy tube. Acta Metall Sin, 2008, 44(2): 139-144 .

Download:  PDF(628KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The microstructure, texture and phase transformation of forged bar, hot-extruded tube and cold-rolled tubes at different conditions of Ni47Ti44Nb9 alloy were investigated in terms by optical microscope,DSC and X-ray technique,in order to provide theoretical data for application of cold-rolled tubes in engineering. The results show that B2 phase presents broad fibred shape in the forged rod, and major textures are close to {112}〈111〉and {110}〈111〉; Fibred microstructure in hot-extruded tube becomes fine and fibres have broken, at the same time, {111} orientation of many grains is close to axis direction of tube; Microstructure in cold-rolled tube consists of B2,β -Nb and (Ti,Nb)4Ni2O phases, fibres has heavily broken, which restrains phase transformation during cooling and heating. And {111}<110〉and {112}〈110〉become the major texture components; As the result of the increase of heat treatment temperature, hardness decreases, temperature interval of phase transformation becomes narrow, transformation peak rises, the primary {111}〈110〉and {112}〈110〉textures markedly enhance. Recrystallization grains have grown at 850℃, thermal hysteresis and hardness obviously drop. The primary texture components depart from {111}〈110〉and {112}〈110〉.These are disadvantageous to expect to obtain greater mechanical properties and restoration strain along radial direction of tube.
Key words:  Shape memory alloy      texture      microstructure      phase transformation      Ni47Ti44Nb9 alloy tube      
Received:  28 May 2007     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2008/V44/I2/139

[1]Shu Y C,Bhattacharya K.Acta Mater,1998;46:5457
[2]Miyazaki S,Otsuka K,Wayman C M.Acta Metall,1989; 37:1873
[3]Paula A S,Canejo J H P,Mahesh K K,Silva R J C,Braz Fernandes F M,Martins R M S,Fernandes F M B,Car- doso A M A,Schell N.Nucl Instrum Method Phys Res, 2006;246B:206
[4]Paula A S,Canejo J H P G,Schell N,Braz Fernandes F M.Nucl Instrum Method Phys Res,2005;238B:111
[5]Knowles K M.Philos Mag,1982;45A:357
[6]Thamburaja P,Anand L.J Mech Phys Solid,2001;49: 709
[7]Yamauchi K,Nishida M,Itai I,Kitamura K,Chiba A. Mater Trans JIM,1996;37:210
[8]Inoue H,Miwa N,Inakazu N.Acta Mater,1996;44:4825
[9]Mulder J H,Thoma P E,Beyer J.Z Metallkd,1993;84: 501
[10]Li D Y,Wu X F,Ko T.Acta Metall Mater,1990;38:19
[11]Liu Y,Xie Z L,Von Humbeeck J,Delaey L.Acta Mater, 1999;47:645
[12]Miyazaki S,No V H,Kitamura K,Khantachawana A, Hosoda H.Int J Plast,2000;16:1135
[13]Ishida,A,Takei A,Miyazaki S.Thin Solid Film,1993; 228:210
[14]Hou L,Grummon D S.Scr Metall Mater,1995;33:989
[15]Yang G J,Xie L Y,Hu W Y,Deng J,Hao S M.Rare Met Mater Eng,1994;23(3):13 (杨冠军,谢丽英,胡文英,邓炬,郝士明.稀有金属材料与工程,1994;23(3):13)
[16]Jin W,Cao M Z,Yang R,Hu Z Q.J Mater Sci Technol, 2002;18:538
[17]Piao M,Miyazaki S,Otsuka K.Mater Trans JIM,1992; 33:346
[18]Li Z H,Xiang G Q,Cheng X H.Mater Design,2006;27: 324
[19]Chang S H,Wu S K,Chang G H.Scr Mater,2005;52: 1341
[20]Li C.Metallurgical Theory.Harbin:Harbin Industry Uni- versity Press,1988;260 (李超.金属学原理.哈尔滨工业大学出版社,1988;260)
[21]Toth L S,Jonas J J,Daniel D,Ray R K.Metall Trans, 1990;21A:2985
[22]Raphanel J L,Von Houtte P.Acta Metall,1985;33:1481
[23]Von Schlippenbach U,Emren F,Lucke K.Acta Metall, 1986;34:1289
[24]Zhao H,Rama S C,Barber G C,Wang Z,Wang X.J Mater Process Technol,2002;128:73
[25]Inagaki H.Trans Jpn Inst Met,1987;28:251
[26]Urabe T,Jonas J J.ISIJ Int,1994;34:435
[27]Wang Z D,Guo Y H,Wang G D,Sun D Q,Xue W Y, Liu X H.Chin J Mater Res,2006;20:399 (王昭东,郭艳辉,王国栋,孙大庆,薛文颖,刘相华.材料研究学报,2006;20:399)
[1] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[4] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[9] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[10] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[11] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[12] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[13] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[14] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[15] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
No Suggested Reading articles found!