Please wait a minute...
Acta Metall Sin  2007, Vol. 43 Issue (4): 393-398     DOI:
Research Articles Current Issue | Archive | Adv Search |
EXPERIMENTAL RESEARCH ON THE SURFACE MODIFICATION OF 316L STAINLESS STEEL BY HIGH-INTENSITY PULSED ION BEAMS
Xu Wang;;
大连理工大学材料科学与工程学院
Cite this article: 

Xu Wang. EXPERIMENTAL RESEARCH ON THE SURFACE MODIFICATION OF 316L STAINLESS STEEL BY HIGH-INTENSITY PULSED ION BEAMS. Acta Metall Sin, 2007, 43(4): 393-398 .

Download:  PDF(689KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The surface of 316L stainless steel was treated by high-intensity pulsed ion beams (HIPIB) with ion energy (70% H+, 30% C+) E = 300 keV, current density J = 200 A/cm2, shot number N = 1, 5, 10, pulse duration τ = 75ns. The surface morphology and the phase structure in the near surface region of original and treated specimens were analyzed with scanning electron microscopy (SEM) and X-ray diffraction (XRD). Electron probe microanalysis (EPMA) was used to study the distribution of elements on the irradiated specimens. It is found that the HIPIB irradiation can smooth the surface of the targets, and the preferred orientation was present in the surface layer of the treated specimens. Otherwise, selective ablation of impurities occurred during the interaction between HIPIB and the targets. The microhardness was increased in a depth range of up to 100 μm due to extremely high stresses and shock waves induced by the bombardment, so as to the friction coefficient of the irradiated surfaces was reduced and the wear resistance of them was improved significantly. Under the cooperation of the smooth surface and the grain refinement with the selective ablation of impurities, the electrochemical corrosion resistance of 316L was enhanced markedly. HIPIB irradiation prolongs the fatigue limit and creep rupture life of 316L, simultaneity reduces the steady creep rate with increasing the shot number.
Key words:  High-intensity pulsed ion beams (HIPIB)      316L stainless steel      surface modification      
Received:  23 August 2006     
ZTFLH:  TG142.71  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2007/V43/I4/393

[1]Davis H A,Remnev G E,Stinnett R W,Yatsui K.Mater Res Bull,1996;21:58
[2]Rej D J,Davis H A,Nastasi M,Olson J C,Peterson E J, Reiswig R D,Walter K C.Stinnett R W,Remnev G E, Strutsn V K.Nuclear Instrum Method,1997;127/128B: 987
[3]Shulov V A,Nochovnaya N A,Remnev G E.Mater Sci Eng,1998;A243:290
[4]Akamatsu H,Tanihara Y,Ikeda T,Iwasaki H,Azuma K, Yatsuzuka M.IEEE Trans Plasma Sci,2002;30:1800
[5]Zhang H T,Wang T M,Wang C.Han B X,Yan S,Zhao W J,Han Y F.Nucl Instrum Methods,2002;197B:83
[6]Le X Y,Zhao W J,Yan S,Han B X,Xiang W.Surf Coat Technol,2002;158-159:14
[7]Zhu X P,Lei M K,Ma T C.Nuclear Instrum Method, 2003;211B:69
[8]Korotaev A D,Tyumentsev A N,Pinzhin Y P,Remnev G E.Surf Coat Technol,2004;185:38
[9]Korotaev A D,Ovchinnikov S V,Pochivalov Y I,Tyu- mentsev A N,Shchipakin D A,Tretjak M V,Isakov I F, Remnev G E.Surf Coat Technol,1998;105:84
[10]Zhang H T,Wang T M,Wang C,Wang W J,Han B X, Yan S,Zhao W J,Han Y F.Rare Met Mater Eng,2003; 32:216 (张洪涛,王天民,王聪,王文军,韩宝玺,颜莎,赵渭江,韩雅芳.稀有金属材料与工程,2003;32:216)
[11]Mei X X,Ma T C,Wang X M,Xu W P,Song M L.Acta Metall Sin,2003;39:926 (梅显秀,马腾才,王秀敏,徐卫平,宋美丽.金属学报,2003; 39:926)
[1] GAO Han, LIU Li, ZHOU Xiaoyu, ZHOU Xinyi, CAI Wenjun, ZHOU Hongling. Preparation and Bioactivity of Micro-Nano Structure on Ti6Al4V Surface[J]. 金属学报, 2023, 59(11): 1466-1474.
[2] CUI Zhenduo, ZHU Jiamin, JIANG Hui, WU Shuilin, ZHU Shengli. Research Progress of the Surface Modification of Titanium and Titanium Alloys for Biomedical Application[J]. 金属学报, 2022, 58(7): 837-856.
[3] YU Chenfan, ZHAO Congcong, ZHANG Zhefeng, LIU Wei. Tensile Properties of Selective Laser Melted 316L Stainless Steel[J]. 金属学报, 2020, 56(5): 683-692.
[4] Dan LI, Yang LI, Rongsheng CHEN, Hongwei NI. Direct Synthesis of NiCo2O4 Nanoneedles and MoS2 Nanoflakes Grown on 316L Stainless Steel Meshes by Two Step Hydrothermal Method for HER[J]. 金属学报, 2018, 54(8): 1179-1186.
[5] Tingguang LIU, Shuang XIA, Qin BAI, Bangxin ZHOU. Morphological Characteristics and Size Distributions of Three-Dimensional Grains and Grain Boundaries in 316L Stainless Steel[J]. 金属学报, 2018, 54(6): 868-876.
[6] Tingguang LIU, Shuang XIA, Qin BAI, Bangxin ZHOU, Yonghao LU. Distribution Characteristics of Twin-Boundaries in Three-Dimensional Grain Boundary Network of 316L Stainless Steel[J]. 金属学报, 2018, 54(10): 1377-1386.
[7] Shu GUO,En-Hou HAN,Haitao WANG,Zhiming ZHANG,Jianqiu WANG. Life Prediction for Stress Corrosion Behavior of 316L Stainless Steel Elbow of Nuclear Power Plant[J]. 金属学报, 2017, 53(4): 455-464.
[8] Erlin ZHANG, Xiaoyan WANG, Yong HAN. Research Status of Biomedical Porous Ti and Its Alloy in China[J]. 金属学报, 2017, 53(12): 1555-1567.
[9] Zhentao YU, Sen YU, Jun CHENG, Xiqun MA. Development and Application of Novel Biomedical Titanium Alloy Materials[J]. 金属学报, 2017, 53(10): 1238-1264.
[10] Xiao LIN, Jun GE, Shuilin WU, Baohua LIU, Huilin YANG, Lei YANG. Advances in Metallic Biomaterials with both Osteogenic and Anti-Infection Properties[J]. 金属学报, 2017, 53(10): 1284-1302.
[11] Guanglu MA, Xinyu CUI, Yanfang SHEN, CINCA Nuria, M. GUILEMANY Josep, Tianying XIONG. INFLUENCE OF SUBSTRATE MECHANICAL PROPER-TIES ON DEPOSITION BEHAVIOUR OF 316L STAINLESS STEEL POWDER[J]. 金属学报, 2016, 52(12): 1610-1618.
[12] LUO Xinmin, WANG Xiang, CHEN Kangmin, LU Jinzhong, WANG Lan, ZHANG Yongkang. SURFACE LAYER HIGH-ENTROPY STRUCTURE AND ANTI-CORROSION PERFORMANCE OF AERO-ALUMINUM ALLOY INDUCED BY LASER SHOCK PROCESSING[J]. 金属学报, 2015, 51(1): 57-66.
[13] LIU Xiahe, WU Xinqiang, HAN En-hou. EFFECTS OF TEMPERATURE ON LECTROCHEMICAL CORROSION OF DOMESTIC NUCLEAR-GRADE 316L STAINLESS STEEL IN Zn-INJECTED AQUEOUS ENVIRONMENT[J]. 金属学报, 2014, 50(1): 64-70.
[14] ZHANG Litao,WANG Jianqiu. STRESS CORROSION CRACK PROPAGATION BEHAVIOR OF DOMESTIC FORGED NUCLEAR GRADE 316L STAINLESS STEEL IN HIGH TEMPERATURE AND HIGH PRESSURE WATER[J]. 金属学报, 2013, 49(8): 911-916.
[15] LUO Xinmin, CHEN Kangmin, ZHANG Jingwen, LU Jinzhong,REN Xudong,LUO Kaiyu, ZHANG Yongkang. DISLOCATION MECHANISM OF SURFACE MODIFICATION FOR COMMERCIAL PURITY ALUMINUM  AND ALUMINUM ALLOY BY LASER SHOCK PROCESSING[J]. 金属学报, 2013, 49(6): 667-674.
No Suggested Reading articles found!