Please wait a minute...
Acta Metall Sin  2007, Vol. 43 Issue (4): 399-403     DOI:
Research Articles Current Issue | Archive | Adv Search |
Gigacycle Fatigue Life Distribution of Aluminum Alloy LC4CS
Wei-Xing YAO
南京航空航天大学
Cite this article: 

Wei-Xing YAO. Gigacycle Fatigue Life Distribution of Aluminum Alloy LC4CS. Acta Metall Sin, 2007, 43(4): 399-403 .

Download:  PDF(473KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Very high cycle fatigue (VHCF) test of 66 aluminum alloy LC4CS specimens was done by piezo-electric fatigue testing machine and fatigue life data were obtained. It is found that the fatigue life distribution of LC4CS under very high cycle fatigue has the duplex peak property and this property is related with the locations of fatigue crack initiation. For the specimens with shorter fatigue life the fatigue cracks initiate at the defects such as inclusions and caves and for the longer the cracks initiate at the surfaces of the specimens. This property makes it inconsequential that the staircase method is used to measure the fatigue limit, and the fatigue life deviation of the VHCF is far larger than those of low cycle fatigue (LCF) and high cycle fatigue (HCF).
Key words:  LC4CS aluminium alloy      very high cycle fatigue      life distribution      duplex peak property      deviation      
Received:  27 July 2006     
ZTFLH:  TB114.3  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2007/V43/I4/399

[1]Naito T,Ueda H,Kikuchi M.J Soc Mater Sci,1983;32: 1162
[2]Lukas P,Kunz L.Fatigue Fract Eng Mater Struct,2002; 25:747
[3]Emura H,Asami K.Trans JSME,1989;55A:45
[4]Kuroshima Y,Saito Y,Shimizu M,Kawasaki K.Trans JSME,1994;60A:2710
[5]Nakamura T,Kaneko M,Tanabe T,Jinbo K,Nagai F. Trans JSME,1995;61A:441
[6]Wang Q Y.J Mech Strength,2002;24:81 (王清远.机械强度,2002;24:81)
[7]Umezawa O,Nagai K.Metall Mater Trans,1998;29A: 809
[8]Umezawa O,Nagai K.ISIJ Int,1997;37:1170
[9]Danninger H,Spoljaric D,Weiss B,Stickler R.Z Metallkd, 1998;89:135
[10]Bathias C.Eng Mater Struct,1999;22:559
[11]Mugahrabi H.Fatigue Fract Eng Mater Struct,1999;22: 633
[12]Murakami Y,Nomoto T,Ueda T.Mater Struct,1999;22: 581
[13]Murakami Y,Takada M,Toriyama T.Int J Fatigue,1998; 16:661
[14]Wang Q Y,Berard J Y,Dubarre A,Baudry G,Rathery S,Bathias C.Fatigue Fract Eng Mater Struct,1999;22: 667
[15]Wang Q Y,Wang Z G,Li S X.Electr Drive Locomot, 2003;(Suppl.):28 (王清远,王中光,李守新.机车电传动,2003;(增刊):28)
[16]Xue H Q,Tao H,Wang H.Mech Sci Technol,2004;23(4): 471 (薛红前,陶华,王弘.机械科学与技术,2004;23(4): 471)
[17]Xue H Q,Tao H,Wang H.J Northwest Polytech Univ, 2004;22:108 (薛红前,陶华,王弘.西北工业大学学报,2004;22:108)
[18]Doi K,Hanami K,Teraoka T,Terauchi S,Sugimoto T. Powder Metall Technol,2005;23:88 (Doi K,Hanami K,Teraoka T,Terauchi S,Sugimoto T.粉末冶金技术,2005;23:88)
[19]Shao H H,Chen G.Trans Chin Soc Attic Mach,2004; 35(6):185 (邵红红,陈光.农业机械学报,2004;35(6):185)
[20]Masuda C,Nishijiama S,Tanaka Y.Trans JSME,1986; 52A:847
[21]Kanazawa K,Nishijima S.J Soc Mater Sci,1997;46:1396
[22]Gao Z T.Handbook of Fatigue Properties of Aeronauti- cal Metals.Beijing:Institute of Aeronautical Materials, 1981 :155 (高镇同.航空金属材料疲劳性能手册.北京:北京航空材料研究所,1981:155)
[1] ZHAO Xu,SUN Yuan,HOU Xingyu,ZHANG Hongyu,ZHOU Yizhou,DING Yutian. Effect of Orientation Deviation on Microstructure and Mechanical Properties of Nickel-Based Single Crystal Superalloy Brazing Joints[J]. 金属学报, 2020, 56(2): 171-181.
[2] Shuangjie CHU,Yongjie YANG,Zhenghua HE,Yuhui SHA,Liang ZUO. Calculation of Magnetostriction Coefficient for Laser-Scribed Grain-Oriented Silicon Steel Based onMagnetic Domain Interaction[J]. 金属学报, 2019, 55(3): 362-368.
[3] Hanqing LIU, Chao HE, Zhiyong HUANG, Qingyuan WANG. Very High Cycle Fatigue Failure Mechanism of TC17 Alloy[J]. 金属学报, 2017, 53(9): 1047-1054.
[4] Lina ZHU,Caiyan DENG,Dongpo WANG,Shengsun HU. EFFECT OF SURFACE ROUGHNESS ON VERY HIGH CYCLE FATIGUE BEHAVIOR OF Ti-6Al-4V ALLOY[J]. 金属学报, 2016, 52(5): 583-591.
[5] Yumin WANG,Shuangming LI,Hong ZHONG,Hengzhi FU. EVALUATION OF THE UNIFORM DISTRIBUTION OF DENDRITIC MICROSTRUCTURE IN DIRECTIONALLY SOLIDIFIED SINGLE-CRYSTAL DD6 SUPERALLOY[J]. 金属学报, 2015, 51(9): 1038-1048.
[6] PENG Xin WANG Jia SHAN Chuan WANG Haijie LIU Zaijian ZOU Yan. CORROSION BEHAVIOR OF LONG–TIME IMMERSED RUSTED CARBON STEEL IN FLOWING SEAWATER[J]. 金属学报, 2012, 48(10): 1260-1266.
[7] . VERY HIGH CYCLE FATIGUE BEHAVIOR OF 1800MPa CLASS AUTOMOTIVE SPRING STEEL[J]. 金属学报, 2006, 42(3): 259-264 .
No Suggested Reading articles found!