Please wait a minute...
Acta Metall Sin  2006, Vol. 42 Issue (2): 134-138     DOI:
Research Articles Current Issue | Archive | Adv Search |
Effect of Oxygen on the Thermal Stability of Zr-Cu-Ni-Al-Ti Bulk Amorphous Alloy
HE Lin
西安交通大学材料科学与工程学院
Cite this article: 

HE Lin. Effect of Oxygen on the Thermal Stability of Zr-Cu-Ni-Al-Ti Bulk Amorphous Alloy. Acta Metall Sin, 2006, 42(2): 134-138 .

Download:  PDF(505KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Crystal zirconium bar and sponge zirconium were employed as raw materials to prepare wedge-like specimens of Zr52.5Cu17.9Ni14.6Al10Ti5 bulk amorphous alloy with different oxygen impurity contents by a tilt casting method using ladle hearth type arc furnace. Oxygen impurity effect on the alloy’s glass forming ability and thermal stability was investigated. It is shown that the glass forming ability of the quinary alloy characterized by maximum amorphous sample forming thickness tmax decreased as oxygen impurity content increased, on the contrary, its thermal stability characterized by supercooled liquid region ΔTX enhanced. The reason that oxygen impurity made Zr52.5Cu17.9Ni14.6Al10Ti5 alloy’s thermal stability increased related to its higher reduced glass transition temperature Trg.
Key words:  Zr-base bulk amorphous alloy      glass forming ability      thermal stability      crystallization kinetics      
Received:  26 May 2005     
ZTFLH:  TG139.8  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2006/V42/I2/134

[1] Liu C T, Chisholm M F, Miller M K. Intermetallics, 2002; 10: 1105
[2] Lin X H, Johnson W L, Rhim W K. Mater Trans JIM, 1997; 38: 473
[3] Yokoyama Y, Fkaura K, Inoue A. Intermetallics, 2002; 10: 1113
[4] Gebert A, Eckert J, Schultz L. Acta Mater, 1998; 46: 5475
[5] Chen M W, Inoue A, Sakurai T. Appl Phys Lett, 1999; 74: 812
[6] Eckert J, Mattern N, Zinkevitch M, Seidel M. Mater Trans JIM, 1998; 39: 623
[7] Inoue A, Shibata T, Zhang T. Mater Trans JIM, 1995; 36: 1420
[8] Yokoyama Y, Inoue K, Fukaura K. Mater Trans, 2002; 43: 2316
[9] Andreas A K, Jorg F L, William L J, Peter J U. Scr Mater, 2001; 44: 1269
[10] Liu L, Chan K C. Intermetallics, 2004; 12: 1143
[11] Chen H S. J Non-Cryst Solids, 1978; 27: 257
[12] Murty B S, Ping D H, Hono K, Inoue A. Acta Mater, 2000; 48: 3985
[13] Louzguine D V, Inoue A. Scr Mater, 2002; 47: 887
[14] Kubler A, Eckert J, Gebert A, Schultz L. J Appl Phys, 1998; 83: 3438
[15] Hng H H, Li Y, Ng S C, Ong C K. J Non-Cryst Solids, 1996; 208: 127
[16] Lu Z P, Li Y, Ng S C. J Non-Cryst Solids, 2000; 270: 103
[17] Inoue A, Takeuchi A. Mater Sci Eng, 2004; A375-377: 16
[1] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[2] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[3] GUO Lu, ZHU Qianke, CHEN Zhe, ZHANG Kewei, JIANG Yong. Non-Isothermal Crystallization Kinetics of Fe76Ga5Ge5B6P7Cu1 Alloy[J]. 金属学报, 2022, 58(6): 799-806.
[4] NIE Jinfeng, WU Yuli, XIE Kewei, LIU Xiangfa. Microstructure and Thermal Stability of Heterostructured Al-AlN Nanocomposite[J]. 金属学报, 2022, 58(11): 1497-1508.
[5] WANG Yihan, YUAN Yuan, YU Jiabin, WU Honghui, WU Yuan, JIANG Suihe, LIU Xiongjun, WANG Hui, LU Zhaoping. Design for Thermal Stability of Nanocrystalline Alloys Based on High-Entropy Effects[J]. 金属学报, 2021, 57(4): 403-412.
[6] YANG Qun, PENG Sixu, BU Qingzhou, YU Haibin. Revealing Glass Transition and Supercooled Liquid in Ni80P20 Metallic Glass[J]. 金属学报, 2021, 57(4): 553-558.
[7] WANG Xiaobo, WANG Yongzhe, CHENG Xudong, JIANG Rong. Thermal Stability of AlCrON-Based Solar Selective Absorbing Coating in Air[J]. 金属学报, 2021, 57(3): 327-339.
[8] PENG Yanyan, YU Liming, LIU Yongchang, MA Zongqing, LIU Chenxi, LI Chong, LI Huijun. Effect of Ageing Treatment at 650 ℃ on Microstructure and Properties of 9Cr-ODS Steel[J]. 金属学报, 2020, 56(8): 1075-1083.
[9] HUANG Huogen, ZHANG Pengguo, ZHANG Pei, WANG Qinguo. Comparison of Glass Forming Ability Between U-Co and U-Fe Base Systems[J]. 金属学报, 2020, 56(6): 849-854.
[10] HUANG Yu, CHENG Guoguang, LI Shijian, DAI Weixing. Precipitation Mechanism and Thermal Stability of Primary Carbide in Ce Microalloyed H13 Steel[J]. 金属学报, 2019, 55(12): 1487-1494.
[11] Chao PENG, Yuan LI, Yonghe DENG, Ping PENG. Atomistic Simulation for Local Atomic Structures of Amorphous Ni-P Alloys with Near-Eutectic Compositions[J]. 金属学报, 2017, 53(12): 1659-1668.
[12] Jianxiong ZOU,Bo LIU,Liwei LIN,Ding REN,Guohua JIAO,Yuanfu LU,Kewei XU. Microstructure and Thermal Stability of MoC DopedRu-Based Alloy Films as Seedless Diffusion Barrier[J]. 金属学报, 2017, 53(1): 31-37.
[13] Weiwei GUO,Chengjun QI,Xiaowu LI. INVESTIGATIONS ON THERMAL STABILITY OF FATIGUE DISLOCATION STRUCTURES IN CONJUGATE AND CRITICAL DOUBLE-SLIP-ORIENTED Cu SINGLE CRYSTALS[J]. 金属学报, 2016, 52(6): 761-768.
[14] YANG Bin, LI Xin, LUO Wendong, LI Yuxiang. EFFECT OF MINOR Sn AND Nb ADDITIONS ON THE THERMAL STABILITY AND COMPRESSIVE PLASTICITY OF Zr-Cu-Fe-Al BULK METALLIC GLASS[J]. 金属学报, 2015, 51(4): 465-472.
[15] LIU Wenbo, ZHANG Chi, YANG Zhigang, XIA Zhixin, GAO Guhui, WENG Yuqing. EFFECT OF SURFACE NANOCRYSTALLIZATION ON MICROSTRUCTURE AND THERMAL STABILITY OF REDUCED ACTIVATION STEEL[J]. 金属学报, 2013, 49(6): 707-716.
No Suggested Reading articles found!