Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (6): 761-768    DOI: 10.11900/0412.1961.2015.00572
Orginal Article Current Issue | Archive | Adv Search |
INVESTIGATIONS ON THERMAL STABILITY OF FATIGUE DISLOCATION STRUCTURES IN CONJUGATE AND CRITICAL DOUBLE-SLIP-ORIENTED Cu SINGLE CRYSTALS
Weiwei GUO1(),Chengjun QI1,Xiaowu LI1,2
1 Institute of Materials Physics and Chemistry, School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
2 Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China
Download:  HTML  PDF(1137KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

It is well known that the cyclic deformation behavior and dislocation structures of Cu single crystals with different orientations have been systematically investigated and understood. However, there is as yet no general and unequivocal knowledge of the thermal stability of fatigue-induced dislocation structures in Cu single crystals, which is particularly significant for the further improvement of low energy dislocation structure (LEDS) theory. In previous work, the thermal stability of fatigue dislocation structures in 18 41] single-slip and coplanar double-slip Cu single crystals have been reported. For deeply understanding the orientation-dependent thermal stability of fatigue dislocation structures, in the present work, conjugate and [017] critical double-slip-oriented Cu single crystals were cyclically deformed at different plastic strain amplitudes γpl up to saturation, and then annealed at different temperatures (300, 500 and 800 ℃) for 30 min, to examine the thermal stability of various fatigue-induced dislocation structures. It was found that an obvious recovery has occurred in various dislocation structures at 300 ℃. At the higher temperatures, e.g., 500 and 800 ℃, a remarkable recrystallization phenomenon takes place together with the formation of many annealing twins. The thermal stability of various dislocation structures produced in fatigued Cu single crystals with different orientations from high to low are on the order of vein structure, persistent slip band (PSB) structure, labyrinth structure and dislocation cells. The annealing twins formed in Cu single crystals with different orientations all develop strictly along the dislocation slip planes, which have been operated under fatigue deformation. The more serious the fatigue-induced slip deformation, the greater the amount of annealing twins would be. Furthermore, an over high annealing temperature, e.g. 800 ℃, would greatly speed up the migration of boundaries of recrystallized grains to restrain the formation of annealing twins, leading to, more or less, the decrease in the amount of twins.

Key words:  Cu single crystal      fatigue dislocation structure      thermal stability      crystallographic orientation      recrystallization      annealing twin     
Received:  09 November 2015     
Fund: Supported by National Natural Science Foundation of China (Nos.51071041, 51231002, 51271054 and 51571058) and Specialized Research Fund for the Doctoral Program of Higher Education of China (No.20110042110017)

Cite this article: 

Weiwei GUO,Chengjun QI,Xiaowu LI. INVESTIGATIONS ON THERMAL STABILITY OF FATIGUE DISLOCATION STRUCTURES IN CONJUGATE AND CRITICAL DOUBLE-SLIP-ORIENTED Cu SINGLE CRYSTALS. Acta Metall Sin, 2016, 52(6): 761-768.

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00572     OR     https://www.ams.org.cn/EN/Y2016/V52/I6/761

Sample γpl N / cyc γpl, cum τs / MPa
1.5×10-4 82000 49.2 29.6
1.5×10-3 10100 60.0 29.4
[017] 6.5×10-3 2620 68.1 49.2
Table1  Fatigue testing conditions and data for and [017] Cu single crystals
Fig.1  SEM-ECC images of dislocation structures in cyclically deformed Cu single crystals at γpl=1.5×10-4 (a, b), and microstructures formed after subsequent annealing at 300 ℃ (c), 500 ℃ (d) and 800 ℃ (e, f) for 30 min (All observed planes are parallel to the loading direction, PSB—persistent slip band, GB—grain boundary)
Fig.2  SEM-ECC images of dislocation structures in cyclically deformed Cu single crystals at γpl=1.5×10-3 (a, b), and microstructures formed after subsequent annealing at 300 ℃ (c), 500 ℃(d, e) and 800 ℃ (f) for 30 min (All observed planes are parallel to the loading direction)
Fig.3  SEM-ECC images of dislocation structures in cyclically deformed [017] Cu single crystals at γpl=6.5×10-3 (a, b), and microstructures formed after subsequent annealing at 300 ℃ (c), 500 ℃ (d, e) and 800 ℃ (f) for 30 min (The observed planes are parallel to the loading direction except for Fig.3e, for which the observed plane is perpendicular to the loading direction)
Fig.4  TEM images of microstructures formed after subsequent annealing for 30 min in cyclically deformed Cu single crystals at γpl =1.5×10-4 at 500 ℃, B=[110] (a), and 800 ℃, B=[114] (b) (B—the incident electron-beam direction)
Fig.5  TEM images of microstructures formed after subsequent annealing for 30 min in cyclically deformed Cu single crystals at γpl =1.5×10-3 at 500 ℃, B=[211] (a, b), 800 ℃, B=[223] (c), and 800 ℃, B=[110] (d)
Fig.6  TEM images of microstructures formed after subsequent annealing for 30 min in cyclically deformed [017] Cu single crystals at γpl=6.5×10-4 at room temperature (RT), B=[421] (a), 300 ℃, B=[100] (b), 500 ℃, B=[110] (c, d), and 800 ℃, B=[110] (e, f) (Inset in Fig.6f shows the SAED pattern of the twin)
Fig.7  Typical DSC plots for cyclically saturated [017] Cu single crystal at γpl = 6.5×10-3
[1] Mughrabi H.Mater Sci Eng, 1978; 33: 207
[2] Jin N Y, Winter A T.Acta Metall, 1984; 32: 989
[3] Ackermann F, Kubin L P, Lepinous J, Mughrabi H.Acta Metall, 1984; 32: 715
[4] Basinski Z S, Basinski S J.Prog Mater Sci, 1992; 36: 89
[5] Suresh S.Fatigue of Materials. 2nd Ed., London: Cambridge University Press, 1998: 28
[6] Li X W, Hu Y M, Wang Z G.Mater Sci Eng, 1998; A248: 299
[7] Li X W, Wang Z G, Li S X.Phil Mag Lett, 1999; 79: 715
[8] Li X W, Wang Z G, Li S X.Mater Sci Eng, 1999; A260: 132
[9] Li X W, Zhang Z F, Wang Z G, Li S X, Umakoshi Y. Defect Diffusion Forum, 2001; 188-199: 153
[10] Li X W, Umakoshi Y, Gong B, Li S X, Wang Z G.Mater Sci Eng, 2002; A333: 51
[11] Zhou Y, Li X W, Yang R Q.Int J Mater Res, 2008; 99: 958
[12] Li P, Li S X, Wang Z G, Zhang Z F.Acta Mater, 2010; 58: 3281
[13] Tahata T, Fujita H, Hiraoka M, Onishi I C.Philos Mag, 1983; 47A: 841
[14] Wang Z R.Scr Mater, 1998; 39: 493
[15] Chen S, Gottstein S.Mater Sci Eng, 1989; 110: 9
[16] Zhu R, Li S X, Li Y, Li M Y, Chao Y S.Acta Metall Sin, 2004; 40: 467
[16] (朱荣, 李守新, 李勇, 李明扬, 晁月盛. 金属学报, 2004; 40: 467)
[17] Xiao S H, Guo J D, Wu S D, He G H, Li S X.Scr Mater, 2002; 41: 1
[18] Guo W W, Qi C J, Yan Y, Li X W.Chin J Nonferrous Met, 2014; 24: 2718
[18] (郭巍巍, 齐成军, 颜莹, 李小武. 中国有色金属学报, 2014; 24: 2718)
[19] Guo W W, Ren H, Qi C J, Li X W.Acta Phys Sin, 2012; 61: 156201-1
[19] (郭巍巍, 任焕, 齐成军, 李小武. 物理学报, 2012; 61: 156201-1)
[20] Guo W W, Qi C J, Li X W.Acta Metall Sin, 2013; 49: 107
[20] (郭巍巍, 齐成军, 李小武. 金属学报, 2013; 49: 107)
[21] Carpenter H, Tamura S.Proc R Soc, 1926; 113A: 161
[22] Burke J E Jr.J Met, 1950; 188: 1324
[23] Fullman R L, Fischer J C.J Appl Phys, 1951; 22: 1350
[24] Gleiter H.Acta Metall, 1969; 17: 1421
[25] Gindraux G, Form W.J Inst Met, 1973; 101: 85
[26] Dash S, Brown N.Acta Metall, 1963; 11: 1067
[27] Meyers M A, Murr L E.Acta Metall, 1978; 26: 951
[28] Mahajan S, Pande C S, Imam M A, Rath B B.Acta Mater, 1997; 45: 2633
[29] Li X W, Zhou Y.J Mater Sci, 2007; 42: 4716
[30] Guo W W, Wang X M, Li X W.Mater Trans, 2010; 51: 887
[31] Xia S, Li H, Zhou B X, Chen W J.Chin J Nature, 2010; 32: 94
[31] (夏爽, 李慧, 周邦新, 陈文觉. 自然杂志, 2010; 32: 94)
[1] CHEN Wenxiong, HU Baojia, JIA Chunni, ZHENG Chengwu, LI Dianzhong. Post-Dynamic Softening of Austenite in a Ni-30%Fe Model Alloy After Hot Deformation[J]. 金属学报, 2020, 56(6): 874-884.
[2] ZHANG Yang, SHAO Jianbo, CHEN Tao, LIU Chuming, CHEN Zhiyong. Deformation Mechanism and Dynamic Recrystallization of Mg-5.6Gd-0.8Zn Alloy During Multi-Directional Forging[J]. 金属学报, 2020, 56(5): 723-735.
[3] YU Lei,LUO Haiwen. Effect of Partial Recrystallization Annealing on Magnetic Properties and Mechanical Properties of Non-Oriented Silicon Steel[J]. 金属学报, 2020, 56(3): 291-300.
[4] Jialin ZHU,Shifeng LIU,Yu CAO,Yahui LIU,Chao DENG,Qing LIU. Effect of Cross Rolling Cycle on the Deformed and Recrystallized Gradient in High-Purity Tantalum Plate[J]. 金属学报, 2019, 55(8): 1019-1033.
[5] Xu LI,Qingbo YANG,Xiangze FAN,Yonglin GUO,Lin LIN,Zhiqing ZHANG. Influence of Deformation Parameters on Dynamic Recrystallization of 2195 Al-Li Alloy[J]. 金属学报, 2019, 55(6): 709-719.
[6] Yahui DENG,Yinhui YANG,Jianchun CAO,Hao QIAN. Research on Dynamic Recrystallization Behavior of 23Cr-2.2Ni-6.3Mn-0.26N Low Nickel TypeDuplex Stainless Steel[J]. 金属学报, 2019, 55(4): 445-456.
[7] HUANG Yu, CHENG Guoguang, LI Shijian, DAI Weixing. Precipitation Mechanism and Thermal Stability of Primary Carbide in Ce Microalloyed H13 Steel[J]. 金属学报, 2019, 55(12): 1487-1494.
[8] Xiting ZHONG, Lei WANG, Feng LIU. Study on Formation Mechanism of Necklace Structure in Discontinuous Dynamic Recrystallization of Incoloy 028[J]. 金属学报, 2018, 54(7): 969-980.
[9] Siqian BAO, Bingbing LIU, Gang ZHAO, Yang XU, Shanshan KE, Xiao HU, Lei LIU. Three-Dimensional Morphologies of Abnormally Grown Goss Oriented Grains in Hi-B Steel During Secondary Recrystallization Annealing[J]. 金属学报, 2018, 54(6): 877-885.
[10] Yusen SU, Yinhui YANG, Jianchun CAO, Yuliang BAI. Research on Hot Working Behavior of Low-NickelDuplex Stainless Steel 2101[J]. 金属学报, 2018, 54(4): 485-493.
[11] Jun HUANG, Haiwen LUO. Influence of Annealing Process on Microstructures, Mechanical and Magnetic Properties of Nb-Containing High-Strength Non-Oriented Silicon Steel[J]. 金属学报, 2018, 54(3): 377-384.
[12] Yongchang LIU, Hongjun ZHANG, Qianying GUO, Xiaosheng ZHOU, Zongqing MA, Yuan HUANG, Huijun LI. Microstructure Evolution of Inconel 718 Superalloy During Hot Working and Its Recent Development Tendency[J]. 金属学报, 2018, 54(11): 1653-1664.
[13] Tao WANG, Zhipeng WAN, Yu SUN, Zhao LI, Yong ZHANG, Lianxi HU. Dynamic Softening Behavior and Microstructure Evolution of Nickel Base Superalloy[J]. 金属学报, 2018, 54(1): 83-92.
[14] Yang XU,Siqian BAO,Gang ZHAO,Xiangbin HUANG,Rusheng HUANG,Bingbing LIU,Nana SONG. Three-Dimensional Morphologies of Different Oriented Grains in Hi-B Steel Formed During Early Stage of Secondary Recrystallization Annealing[J]. 金属学报, 2017, 53(5): 539-548.
[15] Kang WEI, Maicang ZHANG, Xishan XIE. Recrystallization Mechanisms in Hot Working Processes of a Nickel-Based Alloy for Ultra-Supercritical Power Plant Application[J]. 金属学报, 2017, 53(12): 1611-1619.
No Suggested Reading articles found!