Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (6): 761-768    DOI: 10.11900/0412.1961.2015.00572
Orginal Article Current Issue | Archive | Adv Search |
INVESTIGATIONS ON THERMAL STABILITY OF FATIGUE DISLOCATION STRUCTURES IN CONJUGATE AND CRITICAL DOUBLE-SLIP-ORIENTED Cu SINGLE CRYSTALS
Weiwei GUO1(),Chengjun QI1,Xiaowu LI1,2
1 Institute of Materials Physics and Chemistry, School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
2 Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China
Cite this article: 

Weiwei GUO,Chengjun QI,Xiaowu LI. INVESTIGATIONS ON THERMAL STABILITY OF FATIGUE DISLOCATION STRUCTURES IN CONJUGATE AND CRITICAL DOUBLE-SLIP-ORIENTED Cu SINGLE CRYSTALS. Acta Metall Sin, 2016, 52(6): 761-768.

Download:  HTML  PDF(1137KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

It is well known that the cyclic deformation behavior and dislocation structures of Cu single crystals with different orientations have been systematically investigated and understood. However, there is as yet no general and unequivocal knowledge of the thermal stability of fatigue-induced dislocation structures in Cu single crystals, which is particularly significant for the further improvement of low energy dislocation structure (LEDS) theory. In previous work, the thermal stability of fatigue dislocation structures in 18 41] single-slip and coplanar double-slip Cu single crystals have been reported. For deeply understanding the orientation-dependent thermal stability of fatigue dislocation structures, in the present work, conjugate and [017] critical double-slip-oriented Cu single crystals were cyclically deformed at different plastic strain amplitudes γpl up to saturation, and then annealed at different temperatures (300, 500 and 800 ℃) for 30 min, to examine the thermal stability of various fatigue-induced dislocation structures. It was found that an obvious recovery has occurred in various dislocation structures at 300 ℃. At the higher temperatures, e.g., 500 and 800 ℃, a remarkable recrystallization phenomenon takes place together with the formation of many annealing twins. The thermal stability of various dislocation structures produced in fatigued Cu single crystals with different orientations from high to low are on the order of vein structure, persistent slip band (PSB) structure, labyrinth structure and dislocation cells. The annealing twins formed in Cu single crystals with different orientations all develop strictly along the dislocation slip planes, which have been operated under fatigue deformation. The more serious the fatigue-induced slip deformation, the greater the amount of annealing twins would be. Furthermore, an over high annealing temperature, e.g. 800 ℃, would greatly speed up the migration of boundaries of recrystallized grains to restrain the formation of annealing twins, leading to, more or less, the decrease in the amount of twins.

Key words:  Cu single crystal      fatigue dislocation structure      thermal stability      crystallographic orientation      recrystallization      annealing twin     
Received:  09 November 2015     
Fund: Supported by National Natural Science Foundation of China (Nos.51071041, 51231002, 51271054 and 51571058) and Specialized Research Fund for the Doctoral Program of Higher Education of China (No.20110042110017)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00572     OR     https://www.ams.org.cn/EN/Y2016/V52/I6/761

Sample γpl N / cyc γpl, cum τs / MPa
1.5×10-4 82000 49.2 29.6
1.5×10-3 10100 60.0 29.4
[017] 6.5×10-3 2620 68.1 49.2
Table1  Fatigue testing conditions and data for and [017] Cu single crystals
Fig.1  SEM-ECC images of dislocation structures in cyclically deformed Cu single crystals at γpl=1.5×10-4 (a, b), and microstructures formed after subsequent annealing at 300 ℃ (c), 500 ℃ (d) and 800 ℃ (e, f) for 30 min (All observed planes are parallel to the loading direction, PSB—persistent slip band, GB—grain boundary)
Fig.2  SEM-ECC images of dislocation structures in cyclically deformed Cu single crystals at γpl=1.5×10-3 (a, b), and microstructures formed after subsequent annealing at 300 ℃ (c), 500 ℃(d, e) and 800 ℃ (f) for 30 min (All observed planes are parallel to the loading direction)
Fig.3  SEM-ECC images of dislocation structures in cyclically deformed [017] Cu single crystals at γpl=6.5×10-3 (a, b), and microstructures formed after subsequent annealing at 300 ℃ (c), 500 ℃ (d, e) and 800 ℃ (f) for 30 min (The observed planes are parallel to the loading direction except for Fig.3e, for which the observed plane is perpendicular to the loading direction)
Fig.4  TEM images of microstructures formed after subsequent annealing for 30 min in cyclically deformed Cu single crystals at γpl =1.5×10-4 at 500 ℃, B=[110] (a), and 800 ℃, B=[114] (b) (B—the incident electron-beam direction)
Fig.5  TEM images of microstructures formed after subsequent annealing for 30 min in cyclically deformed Cu single crystals at γpl =1.5×10-3 at 500 ℃, B=[211] (a, b), 800 ℃, B=[223] (c), and 800 ℃, B=[110] (d)
Fig.6  TEM images of microstructures formed after subsequent annealing for 30 min in cyclically deformed [017] Cu single crystals at γpl=6.5×10-4 at room temperature (RT), B=[421] (a), 300 ℃, B=[100] (b), 500 ℃, B=[110] (c, d), and 800 ℃, B=[110] (e, f) (Inset in Fig.6f shows the SAED pattern of the twin)
Fig.7  Typical DSC plots for cyclically saturated [017] Cu single crystal at γpl = 6.5×10-3
[1] Mughrabi H.Mater Sci Eng, 1978; 33: 207
[2] Jin N Y, Winter A T.Acta Metall, 1984; 32: 989
[3] Ackermann F, Kubin L P, Lepinous J, Mughrabi H.Acta Metall, 1984; 32: 715
[4] Basinski Z S, Basinski S J.Prog Mater Sci, 1992; 36: 89
[5] Suresh S.Fatigue of Materials. 2nd Ed., London: Cambridge University Press, 1998: 28
[6] Li X W, Hu Y M, Wang Z G.Mater Sci Eng, 1998; A248: 299
[7] Li X W, Wang Z G, Li S X.Phil Mag Lett, 1999; 79: 715
[8] Li X W, Wang Z G, Li S X.Mater Sci Eng, 1999; A260: 132
[9] Li X W, Zhang Z F, Wang Z G, Li S X, Umakoshi Y. Defect Diffusion Forum, 2001; 188-199: 153
[10] Li X W, Umakoshi Y, Gong B, Li S X, Wang Z G.Mater Sci Eng, 2002; A333: 51
[11] Zhou Y, Li X W, Yang R Q.Int J Mater Res, 2008; 99: 958
[12] Li P, Li S X, Wang Z G, Zhang Z F.Acta Mater, 2010; 58: 3281
[13] Tahata T, Fujita H, Hiraoka M, Onishi I C.Philos Mag, 1983; 47A: 841
[14] Wang Z R.Scr Mater, 1998; 39: 493
[15] Chen S, Gottstein S.Mater Sci Eng, 1989; 110: 9
[16] Zhu R, Li S X, Li Y, Li M Y, Chao Y S.Acta Metall Sin, 2004; 40: 467
[16] (朱荣, 李守新, 李勇, 李明扬, 晁月盛. 金属学报, 2004; 40: 467)
[17] Xiao S H, Guo J D, Wu S D, He G H, Li S X.Scr Mater, 2002; 41: 1
[18] Guo W W, Qi C J, Yan Y, Li X W.Chin J Nonferrous Met, 2014; 24: 2718
[18] (郭巍巍, 齐成军, 颜莹, 李小武. 中国有色金属学报, 2014; 24: 2718)
[19] Guo W W, Ren H, Qi C J, Li X W.Acta Phys Sin, 2012; 61: 156201-1
[19] (郭巍巍, 任焕, 齐成军, 李小武. 物理学报, 2012; 61: 156201-1)
[20] Guo W W, Qi C J, Li X W.Acta Metall Sin, 2013; 49: 107
[20] (郭巍巍, 齐成军, 李小武. 金属学报, 2013; 49: 107)
[21] Carpenter H, Tamura S.Proc R Soc, 1926; 113A: 161
[22] Burke J E Jr.J Met, 1950; 188: 1324
[23] Fullman R L, Fischer J C.J Appl Phys, 1951; 22: 1350
[24] Gleiter H.Acta Metall, 1969; 17: 1421
[25] Gindraux G, Form W.J Inst Met, 1973; 101: 85
[26] Dash S, Brown N.Acta Metall, 1963; 11: 1067
[27] Meyers M A, Murr L E.Acta Metall, 1978; 26: 951
[28] Mahajan S, Pande C S, Imam M A, Rath B B.Acta Mater, 1997; 45: 2633
[29] Li X W, Zhou Y.J Mater Sci, 2007; 42: 4716
[30] Guo W W, Wang X M, Li X W.Mater Trans, 2010; 51: 887
[31] Xia S, Li H, Zhou B X, Chen W J.Chin J Nature, 2010; 32: 94
[31] (夏爽, 李慧, 周邦新, 陈文觉. 自然杂志, 2010; 32: 94)
[1] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[3] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[4] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[5] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[6] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[7] WU Caihong, FENG Di, ZANG Qianhao, FAN Shichun, ZHANG Hao, LEE Yunsoo. Microstructure Evolution and Recrystallization Behavior During Hot Deformation of Spray Formed AlSiCuMg Alloy[J]. 金属学报, 2022, 58(7): 932-942.
[8] REN Shaofei, ZHANG Jianyang, ZHANG Xinfang, SUN Mingyue, XU Bin, CUI Chuanyong. Evolution of Interfacial Microstructure of Ni-Co Base Superalloy During Plastic Deformation Bonding and Its Bonding Mechanism[J]. 金属学报, 2022, 58(2): 129-140.
[9] JIANG Weining, WU Xiaolong, YANG Ping, GU Xinfu, XIE Qingge. Formation of Dynamic Recrystallization Zone and Characteristics of Shear Texture in Surface Layer of Hot-Rolled Silicon Steel[J]. 金属学报, 2022, 58(12): 1545-1556.
[10] HU Chen, PAN Shuai, HUANG Mingxin. Strong and Tough Heterogeneous TWIP Steel Fabricated by Warm Rolling[J]. 金属学报, 2022, 58(11): 1519-1526.
[11] NIE Jinfeng, WU Yuli, XIE Kewei, LIU Xiangfa. Microstructure and Thermal Stability of Heterostructured Al-AlN Nanocomposite[J]. 金属学报, 2022, 58(11): 1497-1508.
[12] JIANG Jufu, ZHANG Yihao, LIU Yingze, WANG Ying, XIAO Guanfei, ZHANG Ying. Research on AlSi7Mg Alloy Semi-Solid Billet Fabricated by RAP[J]. 金属学报, 2021, 57(6): 703-716.
[13] WANG Yihan, YUAN Yuan, YU Jiabin, WU Honghui, WU Yuan, JIANG Suihe, LIU Xiongjun, WANG Hui, LU Zhaoping. Design for Thermal Stability of Nanocrystalline Alloys Based on High-Entropy Effects[J]. 金属学报, 2021, 57(4): 403-412.
[14] WANG Xiaobo, WANG Yongzhe, CHENG Xudong, JIANG Rong. Thermal Stability of AlCrON-Based Solar Selective Absorbing Coating in Air[J]. 金属学报, 2021, 57(3): 327-339.
[15] LI Yanmo, GUO Xiaohui, CHEN Bin, LI Peiyue, GUO Qianying, DING Ran, YU Liming, SU Yu, LI Wenya. Microstructure and Mechanical Properties of Linear Friction Welding Joint of GH4169 Alloy/S31042 Steel[J]. 金属学报, 2021, 57(3): 363-374.
No Suggested Reading articles found!