Please wait a minute...
Acta Metall Sin  2017, Vol. 53 Issue (12): 1659-1668    DOI: 10.11900/0412.1961.2017.00185
Orginal Article Current Issue | Archive | Adv Search |
Atomistic Simulation for Local Atomic Structures of Amorphous Ni-P Alloys with Near-Eutectic Compositions
Chao PENG, Yuan LI, Yonghe DENG, Ping PENG()
School of Materials Science & Engineering, Hunan Universuty, Changsha 410082, China
Cite this article: 

Chao PENG, Yuan LI, Yonghe DENG, Ping PENG. Atomistic Simulation for Local Atomic Structures of Amorphous Ni-P Alloys with Near-Eutectic Compositions. Acta Metall Sin, 2017, 53(12): 1659-1668.

Download:  HTML  PDF(1630KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Ni100-xPx alloys with near-eutectic compositions have a strong glass forming ability (GFA), but the microstructure prototypes and their evolution in various solidification processes are still unclear now. To reveal their unique structures, a series of molecular dynamics simulations for the rapid solidification process of liquid Ni100-xPx (x=19.0, 19.4, 19.6, 19.8, 20.0, 21.0) alloys were performed at a cooling rate of 5×1012 K/s, and their local atomic configurations at 300 K were characterized by Voronoi polyhedron index 〈n3,n4,n5,n6〉and cluster type index (Zni/(ijkl)i...). The results show that the local atomic structures of Ni atoms are mainly Frank-Kasper clusters with high coordination (Z≥12) as well as their distorted configurations. Their chemical short-range orders are mostly NiZ-2P3, and these basic clusters can be further aggregated into medium-range orders (MROs) by intercross-sharing (IS) linkages. The majority of P-centered clusters are bi-capped square Archimedean anti-prism (BSAP) polyhedrons, but lots of Frank-Kasper clusters with higher coordination exist in the amorphous Ni100-xPx alloys. Their typical chemical short-range orders are Ni12P. In these short range orders (SROs) centered by P, all shell atoms are found to be Ni atoms, and no MRO can be detected except for their extended clusters linked by vertex-sharing (VS), edge-sharing (ES) and face-sharing (FS). The BSAP polyhedrons and their correlative structures play a crucial role in the formation of amorphous Ni100-xPx alloy. Their quantity is demonstrated to have a significant impact on the glass transformation of rapidly solidified Ni100-xPx alloys. It is found that the number of BSAP polyhedrons and their deformed structures at eutectic composition point x=19.6 is the largest among Ni100-xPx alloys, and the farther x deviates from the eutectic composition point, the smaller the proportion of BSAP polyhedrons and their structures more related to all P-centered clusters, which are consistent with the variation tendency of GFAs of Ni100-xPx alloys. Maybe, it could be responsible for the existence of the strongest GFAs at the eutectic composition point of Ni100-xPx alloys.

Key words:  amorphous Ni-P alloy      molecular dynamics      BSAP cluster      glass forming ability     
Received:  14 May 2017     
ZTFLH:  TG139  
Fund: Supported by National Natural Science Foundation of China (Nos.51071065 and 51428101)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2017.00185     OR     https://www.ams.org.cn/EN/Y2017/V53/I12/1659

Fig.1  Pair distribution functions g(r) for rapidly solidified Ni100-xPx alloys at 300 K

(a) total pair distribution function gtot(r) (b) partial pair distribution function gαβ(r)

Voronoi index Number Voronoi index Number
Ni-centered P-centered Total Ni-centered P-centered Total
<0, 3, 6, 0> 0 355 355 <0, 1, 10, 2> 1089 3 1092
<0, 4, 4, 1> 0 63 63 <0, 3, 6, 4> 917 1 918
<0, 2, 8, 0> 18 373 391 <0, 2, 8, 3> 383 0 383
<0, 3, 6, 1> 26 349 375 <0, 3, 6, 5> 143 0 143
<0, 4, 4, 2> 9 118 127 <0, 4, 4, 5> 132 0 132
<0, 2, 8, 1> 361 261 622 <0, 3, 8, 2> 48 0 48
<0, 3, 6, 2> 146 64 210 <0, 2, 10, 1> 46 0 46
<0, 4, 4, 3> 118 63 181 <0, 4, 6, 3> 45 0 45
<0, 4, 6, 1> 26 10 36 <1, 2, 5, 4> 40 0 40
<0, 0, 12, 0> 640 48 688 <0, 3, 7, 3> 39 0 39
<0, 2, 8, 2> 1112 30 1142 <0, 5, 2, 6> 34 0 34
<0, 3, 6, 3> 719 12 731 <0, 2, 8, 4> 359 0 359
<0, 4, 4, 4> 267 4 271 <0, 0, 12, 2> 117 0 117
<0, 4, 6, 2> 71 2 73 <1, 0, 9, 3> 36 0 36
<0, 3, 7, 2> 48 0 48 <0, 1, 10, 3> 270 0 270
<0, 2, 10, 0> 33 1 34 <0, 4, 4, 6> 38 0 38
<0, 3, 8, 1> 31 2 33 <0, 4, 5, 4> 38 0 38
<1, 2, 6, 3> 31 0 31 <0, 5, 2, 5> 35 1 36
<0, 4, 5, 3> 27 0 27 <0, 1, 10, 4> 60 0 60
Sum: 7552 Ni-centered+P-centered 1760=9312
Table 1  Numbers of various Voronoi polyhedrons in rapidly solidified Ni80.4P19.6 alloys at 300 K
Fig.2  Schematic of typical Voronoi polyhedrons in amorphous Ni100-xPx alloys
CTIM cluster Number
Ni-centered P-centered Total
(10 2/1441 8/1551) 0 42 42
(10 1/1441 5/1551 1/1541 3/1431) 0 40 40
(11 2/1441 8/1551 1/1661) 1 100 101
(11 1/1441 6/1551 2/1541 2/1431) 4 61 65
(11 2/1441 4/1551 1/1661 2/1541 2/1431) 0 39 39
(12 2/1441 8/1551 2/1661) 40 164 204
(12 8/1551 2/1541 2/1431) 100 52 152
(12 12/1551) 92 41 133
(12 2/1441 4/1551 2/1661 2/1541 2/1431) 28 57 85
(12 3/1441 6/1551 3/1661) 8 56 64
(12 2/1441 5/1551 1/1661 3/1541 1/1431) 20 34 54
(12 1/1441 6/1551 1/1661 2/1541 2/1431) 14 25 39
(12 2/1441 4/1551 2/1661 3/1541 1/1321) 2 36 38
(12 4/1441 4/1551 4/1661) 1 32 33
(12 7/1551 2/1541 2/14321 1/1311) 24 6 30
(13 1/1441 10/1551 2/1661) 284 31 315
(13 3/1441 6/1551 4/1661) 149 74 223
(13 1/1441 6/1551 2/1661 2/1541 2/1431) 129 24 153
(13 2/1441 4/1551 3/1661 2/1541 2/1431) 83 35 118
(13 1/1441 7/1551 1/1661 3/1541 1/1431) 107 4 111
(13 8/1551 1/1661 2/1541 2/1431) 101 5 106
(13 2/1441 8/1551 3/1661) 68 29 97
(13 3/1441 3/1551 3/1661 3/1541 1/1431) 55 29 84
(13 2/1441 5/1551 2/1661 3/1541 1/1431) 51 22 73
(13 8/1551 1/1661 3/1541 1/1321) 47 4 51
(13 4/1441 4/1551 5/1661) 16 26 42
(13 1/1441 5/1551 2/1661 2/1541 2/1431 1/1321) 36 3 39
(14 2/1441 8/1551 4/1661) 316 5 321
(14 3/1441 6/1551 5/1661) 165 25 190
(14 1/1441 10/1551 3/1661) 175 3 178
(14 1/1441 7/1551 2/1661 3/1541 1/1431) 155 0 155
(14 2/1441 5/1551 3/1661 3/1541 1/1431) 119 1 120
(14 4/1441 4/1551 6/1661) 88 25 113
(14 1/1441 6/1551 3/1661 2/1541 2/1431) 81 1 82
(14 9/1551 1/1661 3/1541 1/1431) 82 0 82
(14 2/1441 4/1551 4/1661 2/1541 2/1431) 77 2 79
(14 3/1441 3/1551 4/1661 3/1541 1/1431) 58 4 62
(14 12/1551 2/1661) 54 0 54
(14 8/1551 2/1661 2/1541 2/1431) 49 0 49
(15 2/1441 8/1551 5/1661) 168 0 168
(15 1/1441 10/1551 4/1661) 135 1 136
(15 3/1441 6/1551 6/1661) 94 2 96
(15 1/1441 7/1551 3/1661 3/1541 1/1431) 84 0 84
(15 2/1441 5/1551 4/1661 3/1541 1/1431) 47 0 47
(15 4/1441 4/1551 7/1661) 45 1 46
(15 9/1551 2/1661 3/1541 1/1431) 37 0 37
(16 2/1441 8/1551 6/1661) 38 0 38
(16 1/1441 10/1551 5/1661) 34 0 34
Sum 3561 1141 4702
Table 2  Type and corresponding numbers of typical cluster type index method (CTIM) clusters in rapidly solidified Ni80.4P19.6 alloys at 300 K
CTIM cluster Number NiZ+1-xPx
x=0 x=1 x=2 x=3 x=4
(14 2/1441 8/1551 4/1661) 316 0 0 91 186 39
(13 1/1441 10/1551 2/1661) 284 0 10 141 127 6
(14 1/1441 10/1551 3/1661) 175 0 1 47 112 15
(15 2/1441 8/1661 5/1661) 168 0 2 33 87 46
(14 3/1441 6/1551 5/1661) 165 0 1 29 105 30
(14 1/1441 7/1551 2/1661 3/1541 1/431) 155 0 7 63 72 13
(13 3/1441 6/1551 4/1661) 149 0 11 60 72 6
(15 1/1441 10/1551 4/1661) 135 0 0 21 74 40
(13 1/1441 6/1551 2/1661 2/1541 2/1431) 129 0 4 56 62 7
(14 2/1441 5/1551 3/1661 3/1541 1/1431) 119 0 2 20 83 14
(13 1/1441 7/1551 1/1661 3/1541 1/1431) 107 0 0 48 59 0
(13 8/1551 1/1661 2/1541 2/1431) 101 0 8 29 61 3
(12 8/1551 2/1541 2/1431) 100 0 6 72 22 0
Table 3  Types of chemical short-range orders of typical Ni-centered CTIM basic clusters and corresponding numbers in amorphous Ni80.4P19.6 alloys at 300 K
Core Total (13 3/1441 6/1551 4/1661) Core Total (12 2/1441 8/1551 2/1661)
Isolated VS ES FS IS Isolated VS ES FS IS
Ni 149 78 11 5 13 7 Ni 40 22 3 1 2 1
P 74 37 3 3 5 0 P 164 87 18 6 12 0
Ni & P 223 0 13 6 5 18 Ni & P 204 0 2 6 4 4
Table 4  Various linkages of basic clusters in (13 3/1441 6/1551 4/1661) and (12 2/1441 8/1551 2/1661) clusters in rapidly solidified Ni80.4P19.6 alloys at 300 K
Fig.3  Schematic of IS-linkages between two (13 3/1441 6/1551 4/1661) basic clusters (The green and red balls represent Ni and P atoms, respectively)
Voronoi index Ni100-xPx
x=19.0 x=19.4 x=19.6 x=19.8 x=20.0 x=21.0
<0, 0, 12, 0> 2.79 2.22 2.45 2.17 2.95 3.05
<0, 2, 8, 0> 17.26 18.56 19.03 18.79 18.60 15.33
<0, 2, 8, 1> 15.58 14.90 13.32 12.53 16.65 14.43
<0, 3, 6, 0> 13.84 13.51 18.11 17.83 12.95 14.57
<0, 3, 6, 1> 17.11 17.42 17.81 17.32 17.10 15.67
<0, 3, 6, 2> 4.11 2.73 3.27 2.37 4.45 4.38
<0, 4, 4, 1> 2.00 1.80 3.21 2.63 2.00 2.86
<0, 4, 4, 2> 4.95 4.59 6.02 5.61 4.95 5.67
<0, 4, 4, 3> 4.89 4.28 3.21 3.54 5.05 4.90
Sum 82.53 80.01 86.43 82.79 84.70 80.86
Table 5  Numbers of various Voronoi polyhedrons centered at P atoms in rapidly solidified Ni100-xPx alloys at 300 K (%)
Fig.4  Percentages of BSAP polyhedrons <0, 2, 8, 0> and their deformed configurations <0, 3, 6, 1> in amorphous Ni100-xPx alloys as a function x
Cluster type Ni100-xPx
x=19.0 x=19.4 x=19.6 x=19.8 x=20.0 x=21.0
(10 4/1551 2/1422 4/1431) 19 20 24 21 21 22
(10 1/1441 2/1551 1/1421 2/1541 4/1431) 27 27 22 21 25 24
(10 1/1441 5/1551 1/1541 3/1431) 29 37 40 35 36 45
(10 2/1441 8/1551) 24 26 42 38 32 23
(11 1/1441 5/1551 1/1661 2/1541 1/1431 1/1321) 33 27 23 20 29 35
(11 1/1441 6/1551 2/1541 2/1431) 65 58 61 66 78 58
(11 2/1441 4/1551 1/1661 2/1541 2/1431) 26 32 39 38 28 37
(11 2/1441 8/1551 1/1661) 79 89 100 93 90 92
(11 4/1441 4/1551 3/1661) 20 26 23 25 29 32
(12 8/1551 2/1541 2/1431) 33 33 52 50 49 45
(12 12/1551) 35 20 41 27 32 21
(12 1/1441 6/1551 1/1661 2/1541 2/1431) 29 25 25 21 21 22
(12 2/1441 4/1551 2/1661 2/1541 2/1431) 47 72 57 61 64 54
(12 2/1441 4/1551 2/1661 3/1541 1/1321) 35 22 36 28 32 29
(12 2/1441 5/1551 1/1661 3/1541 1/1431) 35 38 34 31 44 27
(12 2/1441 8/1551 2/1661) 112 123 164 143 138 126
(12 3/1441 2/1551 3/1661 2/1541 2/1431) 19 22 23 20 23 24
(12 3/1441 6/1551 3/1661) 52 48 56 53 55 49
(12 4/1441 4/1551 4/1661) 25 20 32 21 23 25
(13 1/1441 6/1551 2/1661 2/1541 2/1431) 26 24 24 28 21 22
(13 1/1441 10/1551 2/1661) 23 27 31 28 20 25
(13 2/1441 4/1551 3/1661 2/1541 2/1431) 21 21 35 22 20 23
(13 2/1441 5/1551 2/1661 3/1541 1/1431) 21 20 22 25 27 24
(13 2/1441 8/1551 3/1661) 20 21 29 24 20 23
(13 3/1441 3/1551 3/1661 3/1541 1/1431) 22 26 29 27 26 29
(13 3/1441 6/1551 4/1661) 73 73 74 82 71 58
(13 4/1441 4/1551 5/1661) 19 23 26 20 21 23
(14 3/1441 6/1551 5/1661) 21 24 25 26 22 21
(14 4/1441 4/1551 6/1661) 22 26 25 24 24 25
Sum 1012 1050 1214 1118 1121 1063
Sum/x×10000% 53.26 54.12 61.94 56.46 56.05 50.62
Table 6  Types and numbers of typical CTIM cluster centered at P atoms in rapidly solidified Ni100-xPx alloys at 300 K
Fig.5  Curves of the percent of clusters related to BSAP and critical thickness (Dc) vs x in Ni100-xPx system
Fig.6  Correlation of (11 1/1441 6/1551 2/1541 2/1431) CTIM cluster with Voronoi <0, 2, 8, 0> polyhedron. The triangular plane surrounded by green lines denotes an omitted tiny face in the Voronoi polyhedron index method (VPIM—Voronoi polyhedron index method)
[1] Brenner A, Riddell G.Deposition of nickel and cobalt by chemical reduction[J]. J. Res. Nat. Bur. Stand., 1947, 39: 385
[2] Sui M L, Lu K.Microstructures of crystallites in nanocrystalline Ni-P alloys[J]. Acta Metall. Sin., 1994, 30: 413(隋曼龄, 卢柯. 纳米晶体Ni-P合金晶粒微观结构的研究[J]. 金属学报, 1994, 30: 413)
[3] Sui M L.An investigation on the recovery behaviors of the lattice distortions in an Ni3P/Ni nanophase material[J] Acta Metall. Sin., 1998, 34: 650(隋曼龄. Ni3P/Ni复相纳米材料晶格畸变的热回复行为研究[J]. 金属学报, 1998, 34: 650)
[4] Budurov S, Fotty V, Toncheva S, et al.The glass-forming ability in the ternary Ni-Co-P and Ni-Cu-P systems[J]. Mater. Sci. Eng., 1991, A133: 455
[5] Paseka I.Hydrogen evolution reaction on Ni-P alloys: The internal stress and the activities of electrodes[J]. Electrochim. Acta, 2008, 53: 4537
[6] Hameed R M A, Fekry A M. Electrochemical impedance studies of modified Ni-P and Ni-Cu-P deposits in alkaline medium[J]. Electrochim. Acta, 2010, 55: 5922
[7] Nash P.Phase Diagrams of Binary Nickel Alloys[M]. Ohio: ASM International, 1991: 2833
[8] Schmetterer C, Vizdal J, Ipser H.A new investigation of the system Ni-P[J]. Intermetallics, 2009, 17: 826
[9] Huang Q S, Liu L, Li J F, et al.Redetermination of the eutectic composition of the Ni-P binary alloy[J]. J. Phase Equilib. Diff., 2010, 31: 532
[10] Huang Q S, Lu B F, Kong L T, et al.On the glass-forming ability of Ni-P binary alloys[J]. Mater. Res. Bull., 2012, 47: 1973
[11] Kraus L, Ha?lar V, Duhaj P, et al. The structure and magnetic properties of nanocrystalline Co21Fe64-xNbxB15 alloys [J]. Mater. Sci. Eng., 1997, A226-228: 626
[12] Cheng Y Q, Ma E.Atomic-level structure-property relationship in metallic glasses[J]. Prog. Mater. Sci., 2011, 56: 379
[13] Ding J, Cheng Y Q, Sheng H W, et al.Short-range structural signature of excess specific heat and fragility of metallic glass-forming supercooled liquids[J]. Phys. Rev., 2012, 85B: 060201
[14] Laws K J, Miracle D B, Ferry M.A predictive structural model for bulk metallic glasses[J]. Nat. Commun., 2015, 6: 8123
[15] Bennett M R, Wright J G.Amorphous films of the transition elements[J]. Phys. Stat. Sol., 1972, 13: 135
[16] Lu K, Wang J T.A micromechanism for crystallization of amorphous alloys I. An in situ TEM observation[J]. J. Cryst. Growth, 1991, 112: 525
[17] Lu K, Sui M L, Wang J T.A micromechanism for crystallization of amorphous alloys II. Bulk crystallization process[J]. J. Cryst. Growth, 1991, 113: 242
[18] Luo W K, Ma E.EXAFS measurements and reverse Monte Carlo modeling of atomic structure in amorphous Ni80P20 alloys[J]. J. Non-Cryst. Solids, 2008, 354: 945
[19] Plimpton S.Fast parallel algorithms for short-range molecular dynamics[J]. J. Comput. Phys., 1995, 117: 1
[20] Mendelev M I, Sordelet D J, Kramer M J.Using atomistic computer simulations to analyze X-ray diffraction data from metallic glasses[J]. J. Appl. Phys., 2007, 102: 043501
[21] Martyna G J, Tobias D J, Klein M L.Constant pressure molecular dynamics algorithms[J]. J. Chem. Phys., 1994, 101: 4177
[22] Verlet L.Computer experiments on classical fluids: I. Thermodynamical properties of lennard-jones molecules[J]. Phys. Rev., 1967, 159: 98
[23] Finney J L.Random packings and the structure of simple liquids. II. The molecular geometry of simple liquids[J]. Proc. R. Soc. Lond., 1970, 319A: 495
[24] Wei Y D, Peng P, Yan Z Z, et al.A comparative study on local atomic configurations characterized by cluster-type-index method and Voronoi polyhedron method[J]. Comput. Mater. Sci., 2016, 123: 214
[25] Mo Y F, Liu R S, Liang Y C, et al.Molecular dynamics simulation on the evolution of microstructures of liquid ZnxAl100-x alloys during rapid solidification[J]. Acta Metall. Sin., 2012, 48: 907(莫云飞, 刘让苏, 梁永超等. ZnxAl100-x合金快凝过程中微结构演变特性的分子动力学模拟[J]. 金属学报, 2012, 48: 907)
[26] Wigner E, Seitz F.On the constitution of metallic sodium[J]. Phys. Rev., 1933, 43: 804
[27] Lamparter P.Reverse monte carlo simulation of amorphous Ni80P20 and Ni81B19 [J]. Phys. Scr., 1995, 57: 72
[28] Swope W C, Andersen H C.106-particle molecular-dynamics study of homogeneous nucleation of crystals in a supercooled atomic liquid[J]. Phys. Rev., 1990, 41B: 7042
[29] Brostow W, Chybicki M, Laskowski R, et al.Voronoi polyhedra and Delaunay simplexes in the structural analysis of molecular-dynamics-simulated materials[J]. Phys. Rev., 1998, 57B: 13448
[30] Yu D Q, Chen M, Han X J.Structure analysis methods for crystalline solids and supercooled liquids[J]. Phys. Rev., 2005, 72E: 051202
[31] Gao W, Feng S D, Qi L, et al.Local five-fold symmetry and diffusion behavior of Zr64Cu36 amorphous alloy based on molecular dynamics[J]. Chin. Phys. Lett., 2015, 32: 116101
[32] Honeycutt J D, Andersen H C.Molecular dynamics study of melting and freezing of small Lennard-Jones clusters[J]. J. Phys. Chem., 1987, 91: 4950
[33] Deng Y H, Wen D D, Peng C, et al.Heredity of icosahedrons: A kinetic parameter related to glass-forming abilities of rapidly solidified Cu56Zr44 alloys[J]. Acta Phys. Sin., 2016, 65: 066401(邓永和, 文大东, 彭超等. 二十面体团簇的遗传: 一个与快凝Cu56Zr44合金玻璃形成能力有关的动力学参数[J]. 物理学报, 2016, 65: 066401)
[34] Wen D D, Peng P, Jiang Y Q, et al.The effect of cooling rates on hereditary characteristics of icosahedral clusters in rapid solidification of liquid Cu56Zr44 alloys[J]. J. Non-Cryst. Solids, 2014, 388: 75
[35] Hou Z Y, Liu L X, Liu R S, et al.Short-range and medium-range order in Ca7Mg3 metallic glass[J]. J. Appl. Phys., 2010, 107: 083511
[36] Wen D D, Peng P, Jiang Y Q, et al.A track study on icosahedral clusters inherited from liquid in the process of rapid solidification of Cu64Zr36 alloy[J]. Acta Phys. Sin., 2013, 62: 196101(文大东, 彭平, 蒋元祺等. 快凝过程中液态Cu64Zr36合金二十面体团簇遗传与演化跟踪[J]. 物理学报, 2013, 62: 196101)
[37] Sheng H W, Luo W K, Alamgir F M, et al.Atomic packing and short-to-medium-range order in metallic glasses[J]. Nature, 2006, 439: 419
[1] LI Haiyong, LI Saiyi. Effect of Temperature on Migration Behavior of <111> Symmetric Tilt Grain Boundaries in Pure Aluminum Based on Molecular Dynamics Simulations[J]. 金属学报, 2022, 58(2): 250-256.
[2] YANG Qun, PENG Sixu, BU Qingzhou, YU Haibin. Revealing Glass Transition and Supercooled Liquid in Ni80P20 Metallic Glass[J]. 金属学报, 2021, 57(4): 553-558.
[3] LIANG Jinjie, GAO Ning, LI Yuhong. Interaction Between Interstitial Dislocation Loop and Micro-Crack in bcc Iron Investigated by Molecular Dynamics Method[J]. 金属学报, 2020, 56(9): 1286-1294.
[4] HUANG Huogen, ZHANG Pengguo, ZHANG Pei, WANG Qinguo. Comparison of Glass Forming Ability Between U-Co and U-Fe Base Systems[J]. 金属学报, 2020, 56(6): 849-854.
[5] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Nanopores on Tensile Properties of Single Crystal/Polycrystalline Nickel Composites[J]. 金属学报, 2020, 56(5): 776-784.
[6] LI Meilin, LI Saiyi. Motion Characteristics of <c+a> Edge Dislocation on the Second-Order Pyramidal Plane in Magnesium Simulated by Molecular Dynamics[J]. 金属学报, 2020, 56(5): 795-800.
[7] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Temperature on Mechanical Propertiesof Carbon Nanotubes-Reinforced Nickel Nano-Honeycombs[J]. 金属学报, 2020, 56(5): 785-794.
[8] ZHOU Xia,LIU Xiaoxia. Mechanical Properties and Strengthening Mechanism of Graphene Nanoplatelets Reinforced Magnesium Matrix Composites[J]. 金属学报, 2020, 56(2): 240-248.
[9] MA Xiaoqiang,YANG Kunjie,XU Yuqiong,DU Xiaochao,ZHOU Jianjun,XIAO Renzheng. Molecular Dynamics Simulation of DisplacementCascades in Nb[J]. 金属学报, 2020, 56(2): 249-256.
[10] Junqin SHI,Kun SUN,Liang FANG,Shaofeng XU. Stress Relaxation and Elastic Recovery of Monocrystalline Cu Under Water Environment[J]. 金属学报, 2019, 55(8): 1034-1040.
[11] Qingdong ZHANG,Shuo LI,Boyang ZHANG,Lu XIE,Rui LI. Molecular Dynamics Modeling and Studying of Micro-Deformation Behavior in Metal Roll-Bonding Process[J]. 金属学报, 2019, 55(7): 919-927.
[12] Jin WANG, Liming YU, Chong LI, Yuan HUANG, Huijun LI, Yongchang LIU. Effect of Different Temperatures on He Atoms Behavior inα-Fe with and without Dislocations[J]. 金属学报, 2019, 55(2): 274-280.
[13] Aidong TU, Chunyu TENG, Hao WANG, Dongsheng XU, Yun FU, Zhanyong REN, Rui YANG. Molecular Dynamics Simulation of the Structure and Deformation Behavior of γ/α2 Interface in TiAl Alloys[J]. 金属学报, 2019, 55(2): 291-298.
[14] Haifeng ZHANG, Haile YAN, Nan JIA, Jianfeng JIN, Xiang ZHAO. Exploring Plastic Deformation Mechanism of MultilayeredCu/Ti Composites by Using Molecular Dynamics Modeling[J]. 金属学报, 2018, 54(9): 1333-1342.
[15] Pengyue ZHAO, Yongbo GUO, Qingshun BAI, Feihu ZHANG. Research of Surface Defects of Polycrystalline Copper Nanoindentation Based on Microstructures[J]. 金属学报, 2018, 54(7): 1051-1058.
No Suggested Reading articles found!