Please wait a minute...
Acta Metall Sin  2021, Vol. 57 Issue (4): 553-558    DOI: 10.11900/0412.1961.2020.00379
Research paper Current Issue | Archive | Adv Search |
Revealing Glass Transition and Supercooled Liquid in Ni80P20 Metallic Glass
YANG Qun1, PENG Sixu1,2, BU Qingzhou1, YU Haibin1()
1.Wuhan National High Magnetic Field Center and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
2.School of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
Cite this article: 

YANG Qun, PENG Sixu, BU Qingzhou, YU Haibin. Revealing Glass Transition and Supercooled Liquid in Ni80P20 Metallic Glass. Acta Metall Sin, 2021, 57(4): 553-558.

Download:  HTML  PDF(1567KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Nickel-phosphorus metallic glass (MG) is one of the most typical MGs, and is also one of the most popular studied MG components, especially in the process of establishing the structure model of amorphous alloys and computer simulations. Although it appears throughout the history of amorphous alloy research, its glass transition temperature and liquid properties have not yet been determined due to its low ability to form glass. In this work, we bypassed the crystallization of Ni80P20 MG during the glass transition process by an ultrafast calorimeter with heating rates up to thousands of Kelvin per second and directly detected its glass transition process. This method offers an opportunity to expose the nature of the Ni80P20 MG supercooled liquid. The liquid fragility of the metallic glass Ni80P20 was determined by the Vogel-Fulcher-Tammann equation based on the dependence of the glass transition temperature at different heating rates. The results show that the liquid fragility of Ni80P20 MG is 93 ± 4, which is obviously a very “fragile” liquid compared with other bulk MGs. It is suggested that this “fragile” liquid behavior of Ni80P20 MG may lead to its low glass-forming ability.

Key words:  metallic glass      ultrafast scanning calorimetry      supercooled liquid      fragility      glass forming ability     
Received:  21 September 2020     
ZTFLH:  TG139  
Fund: Fundamental Research Funds for the Central Universities(2018KFYXKJC009)
About author:  YU Haibin, professor, Tel: 18086029416, E-mail: haibinyu@hust.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2020.00379     OR     https://www.ams.org.cn/EN/Y2021/V57/I4/553

Fig.1  XRD spectrum of Ni80P20 metallic glass (MG) ribbon (a), and the comparison between the heat flow curves of FSC at high heating rate and DSC at low heating rate for Ni80P20 metallic glass (b) (T—temperature, Q—heating rate, Tg—glass transition temperature)
Fig.2  FSC heat flow curves (a) and phase diagram (b) of Ni80P20 metallic glass at different heating rates (SCL—supercooled liquid)
Fig.3  The crystallization Kissinger diagram of Ni80P20 metallic glasses in the heating rate range of DSC and FSC respectively (a), and the change of glass transition temperature at different heating rates and the fitting of VFT equation (b) (Tx—crystallization temperature, Tg20—extrapolated Tg at a heating rate of 20 K/min, m—fragility)
Fig.4  The specific heat capacity curve measured by a high temperature sensor (Inset is an enlarged view of the specific heat curve at the glass transition) (a), and the melting heat flow curve (b) of Ni80P20 metallic glass at a heating rate of 700 K/s (cp—special heat capacity, ΔHm—melting enthalpy, Δcp—heat capacity step)
Fig.5  The non-linear relationship between the liquid fragility of metallic glass and the glass forming ability (dmax—critical effective diameter for a rod-like MG)
1 Zeng Q S, Sheng H W, Ding Y, et al. Long-range topological order in metallic glass [J]. Science, 2011, 332: 1404
2 Wang W H, Dong C, Shek C H. Bulk metallic glasses [J]. Mater. Sci. Eng., 2004, R44: 45
3 Schroers J. Bulk metallic glasses [J]. Phys. Today, 2013, 66: 32
4 Sheng H W, Luo W K, Alamgir F M, et al. Atomic packing and short-to-medium-range order in metallic glasses [J]. Nature, 2006, 439: 419
5 Ma E. Tuning order in disorder [J]. Nat. Mater., 2015, 14: 547
6 Wang W H. The nature and properties of amorphous matter [J]. Prog. Phys., 2013, 33: 177
汪卫华. 非晶态物质的本质和特性 [J]. 物理学进展, 2013, 33: 177
7 Hirata A, Guan P F, Fujita T, et al. Direct observation of local atomic order in a metallic glass [J]. Nat. Mater., 2011, 10: 28
8 Cheng Y Q, Ma E. Atomic-level structure and structure-property relationship in metallic glasses [J]. Prog. Mater. Sci., 2011, 56: 379
9 Kumar G, Desai A, Schroers J. Bulk metallic glass: The smaller the better [J]. Adv. Mater., 2011, 23: 461
10 Johnson W L. Bulk glass-forming metallic alloys: Science and technology [J]. MRS Bull., 1999, 24: 42
11 Suryanarayana C, Inoue A. Iron-based bulk metallic glasses [J]. Int. Mater. Rev., 2013, 58: 131
12 Wang W H. Bulk metallic glasses with functional physical properties [J]. Adv. Mater., 2009, 21: 4524
13 Wang W H, Dong C, Shek C H. Bulk metallic glasses [J]. Mater. Sci. Eng., 2004, R44: 45
14 Greer A L. Metallic glasses...on the threshold [J]. Mater. Today, 2009, 12: 14
15 Johnson W L. Bulk glass-forming metallic alloys: Science and technology [J]. MRS Bull., 1999, 24: 42
16 Schuh C A, Hufnagel T C, Ramamurty U. Mechanical behavior of amorphous alloys [J]. Acta Mater., 2007, 55: 4067
17 Li H X, Lu Z C, Wang S L, et al. Fe-based bulk metallic glasses: Glass formation, fabrication, properties and applications [J]. Prog. Mater. Sci., 2019, 103: 235
18 Lu Z P, Lei Z F, Huang H L, et al. Deformation behavior and toughening of high-entropy alloys [J]. Acta Metall. Sin., 2018, 54: 1553
吕昭平, 雷智峰, 黄海龙等. 高熵合金的变形行为及强韧化 [J]. 金属学报, 2018, 54: 1553
19 Wang W H, Luo P. The dynamic behavior hidden in the long time scale of metallic glasses and its effect on the properties [J]. Acta Metall. Sin., 2018, 54: 1479
汪卫华, 罗 鹏. 金属玻璃中隐藏在长时间尺度下的动力学行为及其对性能的影响 [J]. 金属学报, 2018, 54: 1479
20 Jiang Q K, Wang X D, Nie X P, et al. Zr-(Cu, Ag)-Al bulk metallic glasses [J]. Acta Mater., 2008, 56: 1785
21 Jiang J Z, Hofmann D, Jarvis D J, et al. Low-density high-strength bulk metallic glasses and their composites: A review [J]. Adv. Eng. Mater., 2015, 17: 761
22 Luborsky F E. Amorphous Metal Alloys [M]. Beijing: Metallurgic Industry Press, 1989: 58
卢博斯基 F E. 非晶态金属合金 [M]. 北京: 冶金工业出版社, 1989: 58
23 Brenner A, Couch D E, Williams E K. Electrodeposition of alloys of phosphorus with nickel or cobalt [J]. J. Res. Natl. Bur. Stand., 1950, 44: 109
24 Cargill G S III. Structural investigation of noncrystalline nickel-phosphorus alloys [J]. J. Appl. Phys., 1970, 41: 12
25 Yu H B, Richert R, Samwer K. Structural rearrangements governing Johari-Goldstein relaxations in metallic glasses [J]. Sci. Adv., 2017, 3: e1701577
26 Yu H B, Yang M H, Sun Y, et al. Fundamental link between β relaxation, excess wings, and cage-breaking in metallic glasses [J]. J. Phys. Chem. Lett., 2018, 9: 5877
27 Zhou Z Y, Peng H L, Yu H B. Structural origin for vibration-induced accelerated aging and rejuvenation in metallic glasses [J]. J. Chem. Phys., 2019, 150: 204507
28 Yu H B, Richert R, Maaβ R, et al. Unified criterion for temperature-induced and strain-driven glass transitions in metallic glass [J]. Phys. Rev. Lett., 2015, 115: 135701
29 Angell C A. Formation of glasses from liquids and biopolymers [J]. Science, 1995, 267: 1924
30 Johnson W L, Na J H, Demetriou M D. Quantifying the origin of metallic glass formation [J]. Nat. Commun., 2016, 7: 10313
31 Senkov O N. Correlation between fragility and glass-forming ability of metallic alloys [J]. Phys. Rev., 2007, 76B: 104202
32 Yang Q, Huang J, Qin X H, et al. Revealing hidden supercooled liquid states in Al-based metallic glasses by ultrafast scanning calorimetry: Approaching theoretical ceiling of liquid fragility [J]. Sci. China Mater., 2020, 63: 157
33 Gangopadhyay A K, Pueblo C E, Kelton K F. Link between volume, thermal expansion, and bulk metallic glass formability [J]. Phys. Rev. Mater., 2020, 4: 095602
34 Wang L M, Tian Y J, Liu R P, et al. A “universal” criterion for metallic glass formation [J]. Appl. Phys. Lett., 2012, 100: 261913
35 Zheng H J, Hu L, Zhao X, et al. Poor glass-forming ability of Fe-based alloys: Its origin in high-temperature melt dynamics [J]. J. Non-Cryst. Solids, 2017, 471: 120
36 Bian X F, Sun B A, Hu L N, et al. Fragility of superheated melts and glass-forming ability in Al-based alloys [J]. Phys. Lett., 2005, 335A: 61
37 Zheng Q J, Zhang Y F, Montazerian M, et al. Understanding glass through differential scanning calorimetry [J]. Chem. Rev., 2019, 119: 7848
38 Zhao Y, Zhang B. Evaluating the correlation between liquid fragility and glass-forming ability in the extremely strong Ce-based bulk metallic glasses [J]. J. Appl. Phys., 2017, 122: 115107
39 Brüning R, Samwer K. Glass transition on long time scales [J]. Phys. Rev., 1992, 46B: 11318
40 Böhmer R, Ngai K L, Angell C A, et al. Nonexponential relaxations in strong and fragile glass formers [J]. J. Chem. Phys., 1993, 99: 4201
41 Jia R, Bian X F, Wang Y Y. Thermodynamic determination of fragility in La-based glass-forming liquid [J]. Chin. Sci. Bull., 2011, 56: 3912
42 Wang L M, Angell C A, Richert R. Fragility and thermodynamics in nonpolymeric glass-forming liquids [J]. J. Chem. Phys., 2006, 125: 074505
[1] LIU Shuaishuai, HOU Chaonan, WANG Engang, JIA Peng. Plastic Rheological Behaviors of Zr61Cu25Al12Ti2 and Zr52.5Cu17.9Ni14.6Al10Ti5 Amorphous Alloys in the Supercooled Liquid Region[J]. 金属学报, 2022, 58(6): 807-815.
[2] SUN Xiaojun, HE Jie, CHEN Bin, ZHAO Jiuzhou, JIANG Hongxiang, ZHANG Lili, HAO Hongri. Effect of Fe Content on the Microstructure, Electrical Resistivity, and Nanoindentation Behavior of Zr60Cu40-xFex Phase-Separated Metallic Glasses[J]. 金属学报, 2021, 57(5): 675-683.
[3] PAN Jie, DUAN Fenghui. Rejuvenation Behaviors in Metallic Glasses[J]. 金属学报, 2021, 57(4): 439-452.
[4] JIANG Minqiang, GAO Yang. Structural Rejuvenation of Metallic Glasses and Its Effect on Mechanical Behaviors[J]. 金属学报, 2021, 57(4): 425-438.
[5] BI Jiazi, LIU Xiaobin, LI Ran, ZHANG Tao. Tribological Properties of Polyalphaolefin (PAO6) Lubricant Modified with Particles Additives of Metallic Glass[J]. 金属学报, 2021, 57(4): 559-566.
[6] CAO Qingping, LV Linbo, WANG Xiaodong, JIANG Jianzhong. Magnetron Sputtering Metal Glass Film Preparation and the “Specimen Size Effect” of the Mechanical Property[J]. 金属学报, 2021, 57(4): 473-490.
[7] ZENG Qiaoshi, YIN Ziliang, LOU Hongbo. Polyamorphic Transitions in Metallic Glasses[J]. 金属学报, 2021, 57(4): 491-500.
[8] QU Ruitao, WANG Xiaodi, WU Shaojie, ZHANG Zhefeng. Research Progress in Shear Banding Deformation and Fracture Mechanisms of Metallic Glasses[J]. 金属学报, 2021, 57(4): 453-472.
[9] ZHANG Nizhen, MA Xindi, GENG Chuan, MU Yongkun, SUN Kang, JIA Yandong, HUANG Bo, WANG Gang. Effect of Adding Ag on the Nanoindentation Behavior of Cu-Zr-Al-Based Metallic Glass[J]. 金属学报, 2021, 57(4): 567-574.
[10] LI Ning, HUANG Xin. Recent Advances on 3D Printed Bulk Metallic Glasses[J]. 金属学报, 2021, 57(4): 529-541.
[11] GUAN Pengfei, SUN Shengjun. Atomic-Level Study in the Structure and Its Instability of Metallic Glasses[J]. 金属学报, 2021, 57(4): 501-514.
[12] HUANG Huogen, ZHANG Pengguo, ZHANG Pei, WANG Qinguo. Comparison of Glass Forming Ability Between U-Co and U-Fe Base Systems[J]. 金属学报, 2020, 56(6): 849-854.
[13] YANG Gaolin, LIN Xin, LU Xiangang. Crystallization Morphology and Evolution Mechanism of Laser Multiple Remelting of Zr55Cu30Al10Ni5 Metallic Glass[J]. 金属学报, 2019, 55(12): 1544-1550.
[14] Yanchun ZHAO, Hao SUN, Chunling LI, Jianlong JIANG, Ruipeng MAO, Shengzhong KOU, Chunyan LI. High Temperature Deformation Behavior of High Strength and Toughness Ti-Ni Base Bulk Metallic Glass Composites[J]. 金属学报, 2018, 54(12): 1818-1824.
[15] Weihua WANG, Peng LUO. The Dynamic Behavior Hidden in the Long Time Scale of Metallic Glasses and Its Effect on the Properties[J]. 金属学报, 2018, 54(11): 1479-1489.
No Suggested Reading articles found!